Wu P
Nat Rev Chem. 2023; 4(9):441-458.
PMID: 37127961
DOI: 10.1038/s41570-020-0201-4.
Allemailem K, Almatroodi S, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin W
Int J Mol Sci. 2023; 24(8).
PMID: 37108214
PMC: 10139162.
DOI: 10.3390/ijms24087052.
Xu Y, Tian N, Shi H, Zhou C, Wang Y, Liang F
J Am Chem Soc. 2023; 145(9):5561-5569.
PMID: 36811465
PMC: 10425183.
DOI: 10.1021/jacs.3c01087.
Yang Y, Li D, Wan F, Chen B, Wu G, Li F
Cells. 2022; 11(22).
PMID: 36429003
PMC: 9688475.
DOI: 10.3390/cells11223574.
Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M
Bioimpacts. 2022; 12(4):371-391.
PMID: 35975201
PMC: 9376165.
DOI: 10.34172/bi.2022.23871.
CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells.
Lin-Shiao E, Pfeifer W, Shy B, Doost M, Chen E, Vykunta V
Nucleic Acids Res. 2022; 50(3):1256-1268.
PMID: 35104875
PMC: 8860605.
DOI: 10.1093/nar/gkac049.
Controllable genome editing with split-engineered base editors.
Berrios K, Evitt N, DeWeerd R, Ren D, Luo M, Barka A
Nat Chem Biol. 2021; 17(12):1262-1270.
PMID: 34663942
PMC: 8981362.
DOI: 10.1038/s41589-021-00880-w.
Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids.
Chang M, Bogacheva M, Lou Y
Front Cell Dev Biol. 2021; 9:748576.
PMID: 34660606
PMC: 8517247.
DOI: 10.3389/fcell.2021.748576.
Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy.
Afolabi L, Afolabi M, Sani M, Okunowo W, Yan D, Chen L
Clin Transl Immunology. 2021; 10(6):e1286.
PMID: 34188916
PMC: 8219901.
DOI: 10.1002/cti2.1286.
Reversible RNA acylation for control of CRISPR-Cas9 gene editing.
Habibian M, McKinlay C, Blake T, Kietrys A, Waymouth R, Wender P
Chem Sci. 2021; 11(4):1011-1016.
PMID: 34084356
PMC: 8145180.
DOI: 10.1039/c9sc03639c.
sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine.
Wang Y, Zhou L, Tao R, Liu N, Long J, Qin F
Genome Biol. 2020; 21(1):222.
PMID: 32859244
PMC: 7453718.
DOI: 10.1186/s13059-020-02137-6.
The later stages of viral infection: An undiscovered country of host dependency factors.
King C, Mehle A
PLoS Pathog. 2020; 16(8):e1008777.
PMID: 32841303
PMC: 7447017.
DOI: 10.1371/journal.ppat.1008777.
Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control.
Brown W, Zhou W, Deiters A
Chembiochem. 2020; 22(1):63-72.
PMID: 32833316
PMC: 7928076.
DOI: 10.1002/cbic.202000423.
Development of a Self-Restricting CRISPR-Cas9 System to Reduce Off-Target Effects.
Wang H, Lu H, Lei Y, Gong C, Chen Z, Luan Y
Mol Ther Methods Clin Dev. 2020; 18:390-401.
PMID: 32695841
PMC: 7358219.
DOI: 10.1016/j.omtm.2020.06.012.
Synthetic immunity by remote control.
Gamboa L, Zamat A, Kwong G
Theranostics. 2020; 10(8):3652-3667.
PMID: 32206114
PMC: 7069089.
DOI: 10.7150/thno.41305.
Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA.
Zhou W, Brown W, Bardhan A, Delaney M, Ilk A, Rauen R
Angew Chem Int Ed Engl. 2020; 59(23):8998-9003.
PMID: 32160370
PMC: 7250724.
DOI: 10.1002/anie.201914575.
Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides.
Cui Y, Wang S, Chen J, Li J, Chen W, Wang S
Genome Biol. 2020; 21(1):51.
PMID: 32102684
PMC: 7045643.
DOI: 10.1186/s13059-020-01956-x.
Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage.
Zuo Z, Liu J
Curr Opin Struct Biol. 2020; 62:166-174.
PMID: 32070859
PMC: 7308215.
DOI: 10.1016/j.sbi.2020.01.013.
Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation.
Gamboa L, Phung E, Li H, Meyers J, Hart A, Miller I
ACS Chem Biol. 2020; 15(2):533-542.
PMID: 31904924
PMC: 7035993.
DOI: 10.1021/acschembio.9b01005.
CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci.
Chylinski K, Hubmann M, Hanna R, Yanchus C, Michlits G, Uijttewaal E
Nat Commun. 2019; 10(1):5454.
PMID: 31784531
PMC: 6884486.
DOI: 10.1038/s41467-019-13403-y.