» Articles » PMID: 26819848

The Iflaviruses Sacbrood Virus and Deformed Wing Virus Evoke Different Transcriptional Responses in the Honeybee Which May Facilitate Their Horizontal or Vertical Transmission

Overview
Journal PeerJ
Date 2016 Jan 29
PMID 26819848
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Sacbrood virus (SBV) and Deformed wing virus (DWV) are evolutionarily related positive-strand RNA viruses, members of the Iflavirus group. They both infect the honeybee Apis mellifera but have strikingly different levels of virulence when transmitted orally. Honeybee larvae orally infected with SBV usually accumulate high levels of the virus, which halts larval development and causes insect death. In contrast, oral DWV infection at the larval stage usually causes asymptomatic infection with low levels of the virus, although high doses of ingested DWV could lead to DWV replicating to high levels. We investigated effects of DWV and SBV infection on the transcriptome of honeybee larvae and pupae using global RNA-Seq and real-time PCR analysis. This showed that high levels of SBV replication resulted in down-regulation of the genes involved in cuticle and muscle development, together with changes in expression of putative immune-related genes. In particular, honeybee larvae with high levels of SBV replication, with and without high levels of DWV replication, showed concerted up-regulated expression of antimicrobial peptides (AMPs), and down-regulated expression of the prophenoloxidase activating enzyme (PPAE) together with up-regulation of the expression of a putative serpin, which could lead to the suppression of the melanisation pathway. The effects of high SBV levels on expression of these immune genes were unlikely to be a consequence of SBV-induced developmental changes, because similar effects were observed in honeybee pupae infected by injection. In the orally infected larvae with high levels of DWV replication alone we observed no changes of AMPs or of gene expression in the melanisation pathway. In the injected pupae, high levels of DWV alone did not alter expression of the tested melanisation pathway genes, but resulted in up-regulation of the AMPs, which could be attributed to the effect of DWV on the regulation of AMP expression in response to wounding. We propose that the difference in expression of the honeybee immune genes induced by SBV and DWV may be an evolutionary adaptation to the different predominant transmission routes used by these viruses.

Citing Articles

The intensity of the transcriptional response varies across infection with distinct viral strains in an insect host.

Ray A, Tehel A, Rasgon J, Paxton R, Grozinger C BMC Genomics. 2025; 26(1):175.

PMID: 39984832 PMC: 11846320. DOI: 10.1186/s12864-025-11365-8.


Deformed wing virus of honey bees is inactivated by cold plasma ionized hydrogen peroxide.

Cook S, Ryabov E, Becker C, Rogers C, Posada-Florez F, Evans J Front Insect Sci. 2024; 3:1216291.

PMID: 38469475 PMC: 10926414. DOI: 10.3389/finsc.2023.1216291.


The Honey Bee Gene Is a Taxonomically Restricted Antiviral Immune Gene.

McMenamin A, Brutscher L, Daughenbaugh K, Flenniken M Front Insect Sci. 2024; 1:749781.

PMID: 38468887 PMC: 10926557. DOI: 10.3389/finsc.2021.749781.


Influence of virus abundances in donor colonies and nurse hives on queens of during the rearing process.

Beims H, Janke M, von der Ohe W, Steinert M Open Vet J. 2023; 13(7):879-893.

PMID: 37614729 PMC: 10443816. DOI: 10.5455/OVJ.2023.v13.i7.10.


Transcriptomic Responses Underlying the High Virulence of Black Queen Cell Virus and Sacbrood Virus following a Change in Their Mode of Transmission in Honey Bees ().

Al Naggar Y, Shafiey H, Paxton R Viruses. 2023; 15(6).

PMID: 37376584 PMC: 10303220. DOI: 10.3390/v15061284.


References
1.
Fievet J, Tentcheva D, Gauthier L, de Miranda J, Cousserans F, Colin M . Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virol J. 2006; 3:16. PMC: 1475838. DOI: 10.1186/1743-422X-3-16. View

2.
McMenamin A, Genersch E . Honey bee colony losses and associated viruses. Curr Opin Insect Sci. 2020; 8:121-129. DOI: 10.1016/j.cois.2015.01.015. View

3.
Randolt K, Gimple O, Geissendorfer J, Reinders J, Prusko C, Mueller M . Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol. 2008; 69(4):155-67. DOI: 10.1002/arch.20269. View

4.
Tukey J . Comparing individual means in the analysis of variance. Biometrics. 1949; 5(2):99-114. View

5.
Nadkarni M, Martin F, Jacques N, Hunter N . Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading). 2002; 148(Pt 1):257-266. DOI: 10.1099/00221287-148-1-257. View