» Articles » PMID: 26814966

Genome-wide Nucleosome Specificity and Function of Chromatin Remodellers in ES Cells

Abstract

ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

Citing Articles

A direct interaction between the Chd1 CHCT domain and Rtf1 controls Chd1 distribution and nucleosome positioning on active genes.

Tripplehorn S, Shirra M, Lardo S, Marvil H, Hainer S, Arndt K bioRxiv. 2024; .

PMID: 39677735 PMC: 11643122. DOI: 10.1101/2024.12.06.627179.


Multifunctional histone variants in genome function.

Wong L, Tremethick D Nat Rev Genet. 2024; 26(2):82-104.

PMID: 39138293 DOI: 10.1038/s41576-024-00759-1.


guidedNOMe-seq quantifies chromatin states at single allele resolution for hundreds of custom regions in parallel.

Schwaiger M, Mohn F, Buhler M, Kaaij L BMC Genomics. 2024; 25(1):732.

PMID: 39075377 PMC: 11288131. DOI: 10.1186/s12864-024-10625-3.


ChAHP2 and ChAHP control diverse retrotransposons by complementary activities.

Ahel J, Pandey A, Schwaiger M, Mohn F, Basters A, Kempf G Genes Dev. 2024; 38(11-12):554-568.

PMID: 38960717 PMC: 11293393. DOI: 10.1101/gad.351769.124.


cBAF generates subnucleosomes that expand OCT4 binding and function beyond DNA motifs at enhancers.

Nocente M, Mesihovic Karamitsos A, Drouineau E, Soleil M, Albawardi W, Dulary C Nat Struct Mol Biol. 2024; 31(11):1756-1768.

PMID: 38956169 DOI: 10.1038/s41594-024-01344-0.


References
1.
Min I, Waterfall J, Core L, Munroe R, Schimenti J, Lis J . Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 2011; 25(7):742-54. PMC: 3070936. DOI: 10.1101/gad.2005511. View

2.
Ho L, Miller E, Ronan J, Ho W, Jothi R, Crabtree G . esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol. 2011; 13(8):903-13. PMC: 3155811. DOI: 10.1038/ncb2285. View

3.
Rhee H, Pugh B . Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 2011; 147(6):1408-19. PMC: 3243364. DOI: 10.1016/j.cell.2011.11.013. View

4.
Carriere L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H . Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res. 2011; 40(1):270-83. PMC: 3245943. DOI: 10.1093/nar/gkr737. View

5.
Whyte W, Bilodeau S, Orlando D, Hoke H, Frampton G, Foster C . Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature. 2012; 482(7384):221-5. PMC: 4144424. DOI: 10.1038/nature10805. View