» Articles » PMID: 25692716

Multiplex CRISPR/Cas9-based Genome Editing for Correction of Dystrophin Mutations That Cause Duchenne Muscular Dystrophy

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Feb 19
PMID 25692716
Citations 224
Authors
Affiliations
Soon will be listed here.
Abstract

The CRISPR/Cas9 genome-editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here, we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45-55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene-editing capabilities of the CRISPR/Cas9 system facilitate the generation of a single large deletion that can correct up to 62% of DMD mutations.

Citing Articles

Optimal SpCas9- and SaCas9-mediated gene editing by enhancing gRNA transcript levels through scaffold poly-T tract reduction.

Chey Y, Gierus L, Lushington C, Arudkumar J, B Geiger A, Staker L BMC Genomics. 2025; 26(1):138.

PMID: 39939860 PMC: 11823040. DOI: 10.1186/s12864-025-11317-2.


Engineering structural variants to interrogate genome function.

Koeppel J, Weller J, Vanderstichele T, Parts L Nat Genet. 2024; 56(12):2623-2635.

PMID: 39533047 DOI: 10.1038/s41588-024-01981-7.


Deletion of exons 45 to 55 in the DMD gene: from the therapeutic perspective to the in vitro model.

Poyatos-Garcia J, Soblechero-Martin P, Liquori A, Lopez-Martinez A, Maestre P, Gonzalez-Romero E Skelet Muscle. 2024; 14(1):21.

PMID: 39354597 PMC: 11443720. DOI: 10.1186/s13395-024-00353-3.


Correction of exon 2, exon 2-9 and exons 8-9 duplications in DMD patient myogenic cells by a single CRISPR/Cas9 system.

Lemoine J, Dubois A, Dorval A, Jaber A, Warthi G, Mamchaoui K Sci Rep. 2024; 14(1):21238.

PMID: 39261505 PMC: 11390959. DOI: 10.1038/s41598-024-70075-5.


CRISPR technology in human diseases.

Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z MedComm (2020). 2024; 5(8):e672.

PMID: 39081515 PMC: 11286548. DOI: 10.1002/mco2.672.


References
1.
Lu Q, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T . The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther. 2010; 19(1):9-15. PMC: 3017449. DOI: 10.1038/mt.2010.219. View

2.
Hoffman E, Brown Jr R, Kunkel L . Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987; 51(6):919-28. DOI: 10.1016/0092-8674(87)90579-4. View

3.
Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J . Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol. 2005; 23(3):321-8. DOI: 10.1038/nbt1073. View

4.
Fu Y, Sander J, Reyon D, Cascio V, Joung J . Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014; 32(3):279-284. PMC: 3988262. DOI: 10.1038/nbt.2808. View

5.
Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N . Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121):819-23. PMC: 3795411. DOI: 10.1126/science.1231143. View