» Articles » PMID: 26698166

Mechanism Governing Heme Synthesis Reveals a GATA Factor/heme Circuit That Controls Differentiation

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2015 Dec 25
PMID 26698166
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation.

Citing Articles

The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Wei X, He Y, Yu Y, Tang S, Liu R, Guo J Adv Sci (Weinh). 2025; 12(10):e2412850.

PMID: 39887888 PMC: 11905017. DOI: 10.1002/advs.202412850.


Erythropoiesis: insights from a genomic perspective.

Cha H Exp Mol Med. 2024; 56(10):2099-2104.

PMID: 39349824 PMC: 11542026. DOI: 10.1038/s12276-024-01311-1.


CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean.

Wang L, OConner S, Tanvir R, Zheng W, Cothron S, Towery K New Phytol. 2024; 245(5):2103-2116.

PMID: 39307530 PMC: 11798907. DOI: 10.1111/nph.20141.


Key Genes and under Acute High-Altitude Exposure: A Gene Expression and Network Analysis Based on Expression Profile Data.

Zhao Y, Zhu L, Shi D, Gao J, Fan M Genes (Basel). 2024; 15(8).

PMID: 39202434 PMC: 11353374. DOI: 10.3390/genes15081075.


Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes.

Liao R, Bresnick E Exp Hematol. 2024; 137:104252.

PMID: 38876253 PMC: 11381147. DOI: 10.1016/j.exphem.2024.104252.


References
1.
Campagna D, de Bie C, Schmitz-Abe K, Sweeney M, Sendamarai A, Schmidt P . X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations. Am J Hematol. 2013; 89(3):315-9. PMC: 3943703. DOI: 10.1002/ajh.23616. View

2.
Shivdasani R, Rosenblatt M, Zucker-Franklin D, Jackson C, Hunt P, Saris C . Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995; 81(5):695-704. DOI: 10.1016/0092-8674(95)90531-6. View

3.
Grass J, Jing H, Kim S, Martowicz M, Pal S, Blobel G . Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol Cell Biol. 2006; 26(19):7056-67. PMC: 1592882. DOI: 10.1128/MCB.01033-06. View

4.
Kotkow K, Orkin S . Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol Cell Biol. 1995; 15(8):4640-7. PMC: 230705. DOI: 10.1128/MCB.15.8.4640. View

5.
DeVilbiss A, Sanalkumar R, Johnson K, Keles S, Bresnick E . Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points. Exp Hematol. 2014; 42(8):618-29. PMC: 4125519. DOI: 10.1016/j.exphem.2014.05.004. View