» Articles » PMID: 26653287

Incorporation of Subject-level Covariates in Quantile Normalization of MiRNA Data

Overview
Journal BMC Genomics
Publisher Biomed Central
Specialty Genetics
Date 2015 Dec 15
PMID 26653287
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Most currently-used normalization methods for miRNA array data are based on methods developed for mRNA arrays despite fundamental differences between the data characteristics. The application of conventional quantile normalization can mask important expression differences by ignoring demographic and environmental factors. We present a generalization of the conventional quantile normalization method, making use of available subject-level covariates in a colorectal cancer study.

Results: In simulation, our weighted quantile normalization method is shown to increase statistical power by as much as 10 % when relevant subject-level covariates are available. In application to the colorectal cancer study, this increase in power is also observed, and previously-reported dysregulated miRNAs are rediscovered.

Conclusions: When any subject-level covariates are available, the weighted quantile normalization method should be used over the conventional quantile normalization method.

Citing Articles

Comprehensive Construction of a Circular RNA-Associated Competing Endogenous RNA Network Identified Novel Circular RNAs in Hypertrophic Cardiomyopathy by Integrated Analysis.

Guo Q, Wang J, Sun R, He Z, Chen Q, Liu W Front Genet. 2020; 11:764.

PMID: 32849787 PMC: 7399352. DOI: 10.3389/fgene.2020.00764.


A risk score model for the prediction of osteosarcoma metastasis.

Dong S, Huo H, Mao Y, Li X, Dong L FEBS Open Bio. 2019; 9(3):519-526.

PMID: 30868060 PMC: 6396159. DOI: 10.1002/2211-5463.12592.


Identifying factors associated with the direction and significance of microRNA tumor-normal expression differences in colorectal cancer.

Stevens J, Herrick J, Wolff R, Slattery M BMC Cancer. 2017; 17(1):707.

PMID: 29084506 PMC: 5663119. DOI: 10.1186/s12885-017-3690-x.


A comparison of multiple testing adjustment methods with block-correlation positively-dependent tests.

Stevens J, Al Masud A, Suyundikov A PLoS One. 2017; 12(4):e0176124.

PMID: 28453517 PMC: 5409054. DOI: 10.1371/journal.pone.0176124.


Urinary microRNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone.

Salido-Guadarrama A, Morales-Montor J, Rangel-Escareno C, Langley E, Peralta-Zaragoza O, Cruz Colin J Mol Med Rep. 2016; 13(6):4549-60.

PMID: 27081843 PMC: 4878542. DOI: 10.3892/mmr.2016.5095.

References
1.
Cunningham D, Atkin W, Lenz H, Lynch H, Minsky B, Nordlinger B . Colorectal cancer. Lancet. 2010; 375(9719):1030-47. DOI: 10.1016/S0140-6736(10)60353-4. View

2.
Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, Lefort K . Impact of normalization on miRNA microarray expression profiling. RNA. 2009; 15(3):493-501. PMC: 2657010. DOI: 10.1261/rna.1295509. View

3.
Weber M, Banks E, Ward R, Sitas F . Population characteristics related to colorectal cancer testing in New South Wales, Australia: results from the 45 and Up Study cohort. J Med Screen. 2008; 15(3):137-42. DOI: 10.1258/jms.2008.008050. View

4.
Hawk E, Levin B . Colorectal cancer prevention. J Clin Oncol. 2005; 23(2):378-91. DOI: 10.1200/JCO.2005.08.097. View

5.
Garmire L, Subramaniam S . Evaluation of normalization methods in mammalian microRNA-Seq data. RNA. 2012; 18(6):1279-88. PMC: 3358649. DOI: 10.1261/rna.030916.111. View