» Articles » PMID: 26651607

Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland

Overview
Publisher Cell Press
Specialty Cell Biology
Date 2015 Dec 15
PMID 26651607
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Although SOX2(+) stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2(+) stem cells and hypoplastic gland. Furthermore, we show that the SOX2(+) stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2(+) stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion.

Citing Articles

Single-cell transcriptome atlas of male mouse pituitary across postnatal life highlighting its stem cell landscape.

De Vriendt S, Laporte E, Abayli B, Hoekx J, Hermans F, Lambrechts D iScience. 2025; 28(2):111708.

PMID: 39898054 PMC: 11787594. DOI: 10.1016/j.isci.2024.111708.


Paracrine FGF1 signaling directs pituitary architecture and size.

Khetchoumian K, Sochodolsky K, Lafont C, Gouhier A, Bemmo A, Kherdjemil Y Proc Natl Acad Sci U S A. 2024; 121(40):e2410269121.

PMID: 39320918 PMC: 11459159. DOI: 10.1073/pnas.2410269121.


Pituitary stem cells: past, present and future perspectives.

Perez Millan M, Cheung L, Mercogliano F, Camilletti M, Chirino Felker G, Moro L Nat Rev Endocrinol. 2023; 20(2):77-92.

PMID: 38102391 PMC: 10964491. DOI: 10.1038/s41574-023-00922-4.


Organoid models of the pituitary gland in health and disease.

Laporte E, Vankelecom H Front Endocrinol (Lausanne). 2023; 14:1233714.

PMID: 37614709 PMC: 10442803. DOI: 10.3389/fendo.2023.1233714.


Interleukin-6 is dispensable in pituitary normal development and homeostasis but needed for pituitary stem cell activation following local injury.

Laporte E, De Vriendt S, Hoekx J, Vankelecom H Front Endocrinol (Lausanne). 2023; 13:1092063.

PMID: 36619565 PMC: 9815540. DOI: 10.3389/fendo.2022.1092063.


References
1.
Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson I . SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A. 2008; 105(8):2907-12. PMC: 2268558. DOI: 10.1073/pnas.0707886105. View

2.
Ward R, Davis S, Cho M, Esposito C, Lyons R, Cheng J . Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene. Mamm Genome. 2007; 18(6-7):521-37. PMC: 1998882. DOI: 10.1007/s00335-007-9008-6. View

3.
Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon M . A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One. 2009; 4(3):e4815. PMC: 2654029. DOI: 10.1371/journal.pone.0004815. View

4.
Brennand K, Melton D . Slow and steady is the key to beta-cell replication. J Cell Mol Med. 2009; 13(3):472-87. PMC: 2820566. DOI: 10.1111/j.1582-4934.2008.00635.x. View

5.
Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H . Pituitary progenitor cells tracked down by side population dissection. Stem Cells. 2009; 27(5):1182-95. DOI: 10.1002/stem.51. View