» Articles » PMID: 26609375

Straightforward and Robust QRS Detection Algorithm for Wearable Cardiac Monitor

Overview
Publisher Wiley
Date 2015 Nov 27
PMID 26609375
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

This Letter presents a fairly straightforward and robust QRS detector for wearable cardiac monitoring applications. The first stage of the QRS detector contains a powerful ℓ1-sparsity filter with overcomplete hybrid dictionaries for emphasising the QRS complexes and suppressing the baseline drifts, powerline interference and large P/T waves. The second stage is a simple peak-finding logic based on the Gaussian derivative filter for automatically finding locations of R-peaks in the ECG signal. Experiments on the standard MIT-BIH arrythmia database show that the method achieves an average sensitivity of 99.91% and positive predictivity of 99.92%. Unlike existing methods, the proposed method improves detection performance under small-QRS, wide-QRS complexes and noisy conditions without using the searchback algorithms.

Citing Articles

A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices.

Herraiz A, Martinez-Rodrigo A, Bertomeu-Gonzalez V, Quesada A, Rieta J, Alcaraz R Entropy (Basel). 2020; 22(7).

PMID: 33286505 PMC: 7517279. DOI: 10.3390/e22070733.


Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

Satija U, Ramkumar B, Manikandan M Healthc Technol Lett. 2017; 4(1):2-12.

PMID: 28529758 PMC: 5435964. DOI: 10.1049/htl.2016.0077.


Robust detection of premature ventricular contractions using sparse signal decomposition and temporal features.

Manikandan M, Ramkumar B, Deshpande P, Choudhary T Healthc Technol Lett. 2015; 2(6):141-8.

PMID: 26713158 PMC: 4678438. DOI: 10.1049/htl.2015.0006.


A new way of quantifying diagnostic information from multilead electrocardiogram for cardiac disease classification.

Tripathy R, Sharma L, Dandapat S Healthc Technol Lett. 2015; 1(4):98-103.

PMID: 26609392 PMC: 4612728. DOI: 10.1049/htl.2014.0080.

References
1.
Donoho D, Elad M . Optimally sparse representation in general (nonorthogonal) dictionaries via l minimization. Proc Natl Acad Sci U S A. 2006; 100(5):2197-202. PMC: 153464. DOI: 10.1073/pnas.0437847100. View

2.
Martinez J, Almeida R, Olmos S, Rocha A, Laguna P . A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng. 2004; 51(4):570-81. DOI: 10.1109/TBME.2003.821031. View

3.
Nallathambi G, Principe J . Integrate and fire pulse train automaton for QRS detection. IEEE Trans Biomed Eng. 2013; 61(2):317-26. DOI: 10.1109/TBME.2013.2282954. View

4.
Arzeno N, Deng Z, Chi-Sang Poon . Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng. 2008; 55(2 Pt 1):478-84. PMC: 2532677. DOI: 10.1109/TBME.2007.912658. View

5.
Pahlm O, Sornmo L . Software QRS detection in ambulatory monitoring--a review. Med Biol Eng Comput. 1984; 22(4):289-97. DOI: 10.1007/BF02442095. View