Straightforward and Robust QRS Detection Algorithm for Wearable Cardiac Monitor
Overview
Affiliations
This Letter presents a fairly straightforward and robust QRS detector for wearable cardiac monitoring applications. The first stage of the QRS detector contains a powerful ℓ1-sparsity filter with overcomplete hybrid dictionaries for emphasising the QRS complexes and suppressing the baseline drifts, powerline interference and large P/T waves. The second stage is a simple peak-finding logic based on the Gaussian derivative filter for automatically finding locations of R-peaks in the ECG signal. Experiments on the standard MIT-BIH arrythmia database show that the method achieves an average sensitivity of 99.91% and positive predictivity of 99.92%. Unlike existing methods, the proposed method improves detection performance under small-QRS, wide-QRS complexes and noisy conditions without using the searchback algorithms.
Herraiz A, Martinez-Rodrigo A, Bertomeu-Gonzalez V, Quesada A, Rieta J, Alcaraz R Entropy (Basel). 2020; 22(7).
PMID: 33286505 PMC: 7517279. DOI: 10.3390/e22070733.
Satija U, Ramkumar B, Manikandan M Healthc Technol Lett. 2017; 4(1):2-12.
PMID: 28529758 PMC: 5435964. DOI: 10.1049/htl.2016.0077.
Manikandan M, Ramkumar B, Deshpande P, Choudhary T Healthc Technol Lett. 2015; 2(6):141-8.
PMID: 26713158 PMC: 4678438. DOI: 10.1049/htl.2015.0006.
Tripathy R, Sharma L, Dandapat S Healthc Technol Lett. 2015; 1(4):98-103.
PMID: 26609392 PMC: 4612728. DOI: 10.1049/htl.2014.0080.