» Articles » PMID: 26609392

A New Way of Quantifying Diagnostic Information from Multilead Electrocardiogram for Cardiac Disease Classification

Overview
Publisher Wiley
Date 2015 Nov 27
PMID 26609392
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

A new measure for quantifying diagnostic information from a multilead electrocardiogram (MECG) is proposed. This diagnostic measure is based on principal component (PC) multivariate multiscale sample entropy (PMMSE). The PC analysis is used to reduce the dimension of the MECG data matrix. The multivariate multiscale sample entropy is evaluated over the PC matrix. The PMMSE values along each scale are used as a diagnostic feature vector. The performance of the proposed measure is evaluated using a least square support vector machine classifier for detection and classification of normal (healthy control) and different cardiovascular diseases such as cardiomyopathy, cardiac dysrhythmia, hypertrophy and myocardial infarction. The results show that the cardiac diseases are successfully detected and classified with an average accuracy of 90.34%. Comparison with some of the recently published methods shows improved performance of the proposed measure of cardiac disease classification.

Citing Articles

Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures.

Lahmiri S, Dawson D, Shmuel A Biomed Eng Lett. 2019; 8(1):29-39.

PMID: 30603188 PMC: 6208554. DOI: 10.1007/s13534-017-0051-2.


Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

Tripathy R, Dandapat S Healthc Technol Lett. 2017; 4(2):57-63.

PMID: 28894589 PMC: 5437706. DOI: 10.1049/htl.2016.0089.


Analysis of physiological signals using state space correlation entropy.

Tripathy R, Deb S, Dandapat S Healthc Technol Lett. 2017; 4(1):30-33.

PMID: 28261492 PMC: 5327732. DOI: 10.1049/htl.2016.0065.


Diagnostic measure to quantify loss of clinical components in multi-lead electrocardiogram.

Tripathy R, Sharma L, Dandapat S Healthc Technol Lett. 2016; 3(1):61-6.

PMID: 27222735 PMC: 4814854. DOI: 10.1049/htl.2015.0011.


Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.

Tripathy R, Dandapat S J Med Syst. 2016; 40(6):143.

PMID: 27118009 DOI: 10.1007/s10916-016-0505-6.

References
1.
Whitsel E, Raghunathan T, Pearce R, Lin D, Rautaharju P, LEMAITRE R . RR interval variation, the QT interval index and risk of primary cardiac arrest among patients without clinically recognized heart disease. Eur Heart J. 2001; 22(2):165-73. DOI: 10.1053/euhj.2000.2262. View

2.
Yang H . Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans Biomed Eng. 2010; 58(2):339-47. DOI: 10.1109/TBME.2010.2063704. View

3.
Sharma L, Dandapat S, Mahanta A . Multichannel ECG data compression based on multiscale principal component analysis. IEEE Trans Inf Technol Biomed. 2012; 16(4):730-6. DOI: 10.1109/TITB.2012.2195322. View

4.
Dehnavi A, Farahabadi I, Rabbani H, Farahabadi A, Mahjoob M, Dehnavi N . Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network. J Res Med Sci. 2011; 16(2):136-42. PMC: 3214294. View

5.
Li Q, Rajagopalan C, Clifford G . Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng. 2013; 61(6):1607-13. DOI: 10.1109/TBME.2013.2275000. View