» Articles » PMID: 28878207

Silicon Quantum Processor with Robust Long-distance Qubit Couplings

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Sep 8
PMID 28878207
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.Quantum computers will require a large network of coherent qubits, connected in a noise-resilient way. Tosi et al. present a design for a quantum processor based on electron-nuclear spins in silicon, with electrical control and coupling schemes that simplify qubit fabrication and operation.

Citing Articles

Spin relaxation of a donor electron coupled to interface states.

Huang P, Bryant G Phys Rev B. 2024; 98(19).

PMID: 39445162 PMC: 11497471. DOI: 10.1103/physrevb.98.195307.


Machine Learning-Assisted Precision Manufacturing of Atom Qubits in Silicon.

Tranter A, Kranz L, Sutherland S, Keizer J, Gorman S, Buchler B ACS Nano. 2024; .

PMID: 39018335 PMC: 11295186. DOI: 10.1021/acsnano.4c00080.


Correlated Spectroscopy of Electric Noise with Color Center Clusters.

Delord T, Monge R, Meriles C Nano Lett. 2024; 24(22):6474-6479.

PMID: 38767585 PMC: 11157654. DOI: 10.1021/acs.nanolett.4c00222.


Design of high-performance entangling logic in silicon quantum dot systems with Bayesian optimization.

Kang J, Yoon T, Lee C, Lim S, Ryu H Sci Rep. 2024; 14(1):10080.

PMID: 38698015 PMC: 11066012. DOI: 10.1038/s41598-024-60478-9.


Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields.

Fernandez de Fuentes I, Botzem T, Johnson M, Vaartjes A, Asaad S, Mourik V Nat Commun. 2024; 15(1):1380.

PMID: 38355747 PMC: 11258329. DOI: 10.1038/s41467-024-45368-y.


References
1.
Boross P, Szechenyi G, Palyi A . Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon. Nanotechnology. 2016; 27(31):314002. DOI: 10.1088/0957-4484/27/31/314002. View

2.
Maurer P, Kucsko G, Latta C, Jiang L, Yao N, Bennett S . Room-temperature quantum bit memory exceeding one second. Science. 2012; 336(6086):1283-6. DOI: 10.1126/science.1220513. View

3.
Morello A, Pla J, Zwanenburg F, Chan K, Tan K, Huebl H . Single-shot readout of an electron spin in silicon. Nature. 2010; 467(7316):687-91. DOI: 10.1038/nature09392. View

4.
Knill E . Quantum computing with realistically noisy devices. Nature. 2005; 434(7029):39-44. DOI: 10.1038/nature03350. View

5.
Kim D, Ward D, Simmons C, Gamble J, Blume-Kohout R, Nielsen E . Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat Nanotechnol. 2015; 10(3):243-7. DOI: 10.1038/nnano.2014.336. View