» Articles » PMID: 26588566

The Molecular Mechanism Underlying Recruitment and Insertion of Lipid-Anchored LC3 Protein into Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2015 Nov 21
PMID 26588566
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Lipid modification of cytoplasmic proteins initiates membrane engagement that triggers diverse cellular processes. Despite the abundance of lipidated proteins in the human proteome, the key determinants underlying membrane recognition and insertion are poorly understood. Here, we define the course of spontaneous membrane insertion of LC3 protein modified with phosphatidylethanolamine using multiple coarse-grain simulations. The partitioning of the lipid anchor chains proceeds through a concerted process, with its two acyl chains inserting one after the other. Concurrently, a conformational rearrangement involving the α-helix III of LC3, especially in the three basic residues Lys65, Arg68, and Arg69, ensures stable insertion of the phosphatidylethanolamine anchor into membranes. Mutational studies validate the crucial role of these residues, and further live-cell imaging analysis shows a substantial reduction in the formation of autophagic vesicles for the mutant proteins. Our study captures the process of water-favored LC3 protein recruitment to the membrane and thus opens, to our knowledge, new avenues to explore the cellular dynamics underlying vesicular trafficking.

Citing Articles

Autophagy3D: a comprehensive autophagy structure database.

Neha , Castin J, Fatihi S, Gahlot D, Arun A, Thukral L Database (Oxford). 2024; 2024.

PMID: 39298565 PMC: 11412239. DOI: 10.1093/database/baae088.


Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants.

Michalak K, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A Ann Bot. 2024; 133(4):559-572.

PMID: 38324309 PMC: 11037490. DOI: 10.1093/aob/mcae015.


Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery.

Jang H, Kim H, Kim E, Han G, Jang Y, Kim Y Biomater Res. 2023; 27(1):124.

PMID: 38031117 PMC: 10688116. DOI: 10.1186/s40824-023-00456-w.


AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway.

Malhotra N, Khatri S, Kumar A, Arun A, Daripa P, Fatihi S Autophagy. 2023; 19(12):3201-3220.

PMID: 37516933 PMC: 10621275. DOI: 10.1080/15548627.2023.2238578.


Autophagosome membrane expansion is mediated by the N-terminus and -membrane association of human ATG8s.

Zhang W, Nishimura T, Gahlot D, Saito C, Davis C, Jefferies H Elife. 2023; 12.

PMID: 37288820 PMC: 10289813. DOI: 10.7554/eLife.89185.


References
1.
Zimmerberg J, Kozlov M . How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol. 2005; 7(1):9-19. DOI: 10.1038/nrm1784. View

2.
Marrink S, Tieleman D . Perspective on the Martini model. Chem Soc Rev. 2013; 42(16):6801-22. DOI: 10.1039/c3cs60093a. View

3.
Schafer L, de Jong D, Holt A, Rzepiela A, De Vries A, Poolman B . Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc Natl Acad Sci U S A. 2011; 108(4):1343-8. PMC: 3029762. DOI: 10.1073/pnas.1009362108. View

4.
Thapar R, Williams J, Campbell S . NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. J Mol Biol. 2004; 343(5):1391-408. DOI: 10.1016/j.jmb.2004.08.106. View

5.
Castillo N, Monticelli L, Barnoud J, Tieleman D . Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers. Chem Phys Lipids. 2013; 169:95-105. DOI: 10.1016/j.chemphyslip.2013.02.001. View