» Articles » PMID: 26555056

Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis

Overview
Journal Dev Cell
Publisher Cell Press
Date 2015 Nov 12
PMID 26555056
Citations 213
Authors
Affiliations
Soon will be listed here.
Abstract

Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.

Citing Articles

Circ-AARS plays an important role during the odontogenic differentiation of dental pulp stem cells by modulating miR-24-3p/KLF6 expression.

Sui M, Lyu J, Zhou J, Liao Q, Xiao Z, Jin M Stem Cell Res Ther. 2025; 16(1):137.

PMID: 40083007 PMC: 11907881. DOI: 10.1186/s13287-025-04239-z.


Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos.

Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I Elife. 2025; 13.

PMID: 40014376 PMC: 11867617. DOI: 10.7554/eLife.100735.


Capture primed pluripotency in guinea pig.

Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z Stem Cell Reports. 2025; 20(2):102388.

PMID: 39793577 PMC: 11864139. DOI: 10.1016/j.stemcr.2024.102388.


The transcription factor GABPA is a master regulator of naive pluripotency.

Zhou C, Wang M, Zhang C, Zhang Y Nat Cell Biol. 2025; 27(1):48-58.

PMID: 39747581 PMC: 11735382. DOI: 10.1038/s41556-024-01554-0.


Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance.

Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T J Biol Chem. 2024; 301(2):108140.

PMID: 39730061 PMC: 11791114. DOI: 10.1016/j.jbc.2024.108140.


References
1.
Ralston A, Rossant J . Genetic regulation of stem cell origins in the mouse embryo. Clin Genet. 2005; 68(2):106-12. DOI: 10.1111/j.1399-0004.2005.00478.x. View

2.
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno K, Yamada R . An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006; 34(5):e42. PMC: 1409679. DOI: 10.1093/nar/gkl050. View

3.
Chazaud C, Yamanaka Y, Pawson T, Rossant J . Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006; 10(5):615-24. DOI: 10.1016/j.devcel.2006.02.020. View

4.
Shin K, Fogg V, Margolis B . Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006; 22:207-35. DOI: 10.1146/annurev.cellbio.22.010305.104219. View

5.
Lafon S, Keller Y, Coifman R . Data fusion and multicue data matching by diffusion maps. IEEE Trans Pattern Anal Mach Intell. 2006; 28(11):1784-97. DOI: 10.1109/TPAMI.2006.223. View