» Articles » PMID: 26473406

Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell-Boltzmann Statistics Versus Non-Ergodic Events

Overview
Specialty Chemistry
Date 2015 Oct 17
PMID 26473406
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The velocity of a molecule evaporated from a mass-selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high-velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non-ergodic events.

Citing Articles

Molecular Simulation Study on the Wettability of a Surface Texturized with Hierarchical Pillars.

Kim K, Choi S, Zhang Z, Jang J Molecules. 2023; 28(11).

PMID: 37298990 PMC: 10254704. DOI: 10.3390/molecules28114513.


Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations.

Tiefenthaler L, Scheier P, Erdmann E, Aguirre N, Diaz-Tendero S, Luxford T Phys Chem Chem Phys. 2023; 25(7):5361-5371.

PMID: 36647750 PMC: 9930733. DOI: 10.1039/d2cp04172c.


Energy Dispersion in Pyridinium-Water Nanodroplets upon Irradiation.

Bertier P, Lavy L, Comte D, Feketeova L, Salbaing T, Azuma T ACS Omega. 2022; 7(12):10235-10242.

PMID: 35382340 PMC: 8973082. DOI: 10.1021/acsomega.1c06842.


Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation.

Feketeova L, Bertier P, Salbaing T, Azuma T, Calvo F, Farizon B Proc Natl Acad Sci U S A. 2019; 116(45):22540-22544.

PMID: 31636185 PMC: 6842599. DOI: 10.1073/pnas.1911136116.


Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules.

Heiles S, Cooper R, DiTucci M, Williams E Chem Sci. 2017; 8(4):2973-2982.

PMID: 28451364 PMC: 5380113. DOI: 10.1039/c6sc04957e.

References
1.
Bruny G, Eden S, Feil S, Fillol R, El Farkh K, Harb M . A new experimental setup designed for the investigation of irradiation of nanosystems in the gas phase: a high intensity mass-and-energy selected cluster beam. Rev Sci Instrum. 2012; 83(1):013305. DOI: 10.1063/1.3677845. View

2.
Stockett M, Gatchell M, Alexander J, Berzins U, Chen T, Farid K . Fragmentation of anthracene C₁₄H₁₀, acridine C₁₃H₉N and phenazine C₁₂H₈N₂ ions in collisions with atoms. Phys Chem Chem Phys. 2014; 16(40):21980-7. DOI: 10.1039/c4cp03293d. View

3.
Rybkin V, Simakov A, Bakken V, Reine S, Kjaergaard T, Helgaker T . Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics. J Comput Chem. 2012; 34(7):533-44. DOI: 10.1002/jcc.23162. View

4.
Teyssier C, Fillol R, Abdoul-Carime H, Farizon B, Farizon M, Mark T . A novel "correlated ion and neutral time of flight" method: event-by-event detection of neutral and charged fragments in collision induced dissociation of mass selected ions. Rev Sci Instrum. 2014; 85(1):015118. DOI: 10.1063/1.4863015. View

5.
Liu B, Nielsen S, Hvelplund P, Zettergren H, Cederquist H, Manil B . Collision-induced dissociation of hydrated adenosine monophosphate nucleotide ions: protection of the ion in water nanoclusters. Phys Rev Lett. 2006; 97(13):133401. DOI: 10.1103/PhysRevLett.97.133401. View