» Articles » PMID: 26443215

Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors

Overview
Specialty Molecular Biology
Date 2015 Oct 8
PMID 26443215
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

Citing Articles

Sleeping Beauty mRNA-LNP enables stable rAAV transgene expression in mouse and NHP hepatocytes and improves vector potency.

Zakas P, Cunningham S, Doherty A, van Dijk E, Ibraheim R, Yu S Mol Ther. 2024; 32(10):3356-3371.

PMID: 38981468 PMC: 11489535. DOI: 10.1016/j.ymthe.2024.06.021.


Gene editing in small and large animals for translational medicine: a review.

Mariano C, de Oliveira V, Ambrosio C Anim Reprod. 2024; 21(1):e20230089.

PMID: 38628493 PMC: 11019828. DOI: 10.1590/1984-3143-AR2023-0089.


A universal deep-learning model for zinc finger design enables transcription factor reprogramming.

Ichikawa D, Abdin O, Alerasool N, Kogenaru M, Mueller A, Wen H Nat Biotechnol. 2023; 41(8):1117-1129.

PMID: 36702896 PMC: 10421740. DOI: 10.1038/s41587-022-01624-4.


TALENs-an indispensable tool in the era of CRISPR: a mini review.

Bhardwaj A, Nain V J Genet Eng Biotechnol. 2021; 19(1):125.

PMID: 34420096 PMC: 8380213. DOI: 10.1186/s43141-021-00225-z.


In Vivo Applications of Cell-Penetrating Zinc-Finger Transcription Factors.

Ren C, Adams A, Pyles B, Bailus B, OGeen H, Segal D Methods Mol Biol. 2018; 1867:239-251.

PMID: 30155828 PMC: 6296463. DOI: 10.1007/978-1-4939-8799-3_18.


References
1.
Garg A, Lohmueller J, Silver P, Armel T . Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 2012; 40(15):7584-95. PMC: 3424557. DOI: 10.1093/nar/gks404. View

2.
Ousterout D, Perez-Pinera P, Thakore P, Kabadi A, Brown M, Qin X . Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013; 21(9):1718-26. PMC: 3776627. DOI: 10.1038/mt.2013.111. View

3.
Gersbach C, Gaj T, Barbas 3rd C . Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res. 2014; 47(8):2309-18. PMC: 4139171. DOI: 10.1021/ar500039w. View

4.
Perez-Pinera P, Kocak D, Vockley C, Adler A, Kabadi A, Polstein L . RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10(10):973-6. PMC: 3911785. DOI: 10.1038/nmeth.2600. View

5.
Reyon D, Tsai S, Khayter C, Foden J, Sander J, Joung J . FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012; 30(5):460-5. PMC: 3558947. DOI: 10.1038/nbt.2170. View