» Articles » PMID: 26413465

Dissecting Diabetes/metabolic Disease Mechanisms Using Pluripotent Stem Cells and Genome Editing Tools

Overview
Journal Mol Metab
Specialty Cell Biology
Date 2015 Sep 29
PMID 26413465
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Diabetes and metabolic syndromes are chronic, devastating diseases with increasing prevalence. Human pluripotent stem cells are gaining popularity in their usage for human in vitro disease modeling. With recent rapid advances in genome editing tools, these cells can now be genetically manipulated with relative ease to study how genes and gene variants contribute to diabetes and metabolic syndromes.

Scope Of Review: We highlight the diabetes and metabolic genes and gene variants, which could potentially be studied, using two powerful technologies - human pluripotent stem cells (hPSCs) and genome editing tools - to aid the elucidation of yet elusive mechanisms underlying these complex diseases.

Major Conclusions: hPSCs and the advancing genome editing tools appear to be a timely and potent combination for probing molecular mechanism(s) underlying diseases such as diabetes and metabolic syndromes. The knowledge gained from these hiPSC-based disease modeling studies can potentially be translated into the clinics by guiding clinicians on the appropriate type of medication to use for each condition based on the mechanism of action of the disease.

Citing Articles

A critical review on therapeutic approaches of CRISPR-Cas9 in diabetes mellitus.

Bora J, Dey A, Lyngdoh A, Dhasmana A, Ranjan A, Kishore S Naunyn Schmiedebergs Arch Pharmacol. 2023; 396(12):3459-3481.

PMID: 37522916 DOI: 10.1007/s00210-023-02631-1.


Multidisciplinary Effort to Drive Precision-Medicine for the Future.

Kong D, Yu H, Sim X, White K, Tai E, Wenk M Front Digit Health. 2022; 4:845405.

PMID: 35585913 PMC: 9108202. DOI: 10.3389/fdgth.2022.845405.


Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling.

Skoczek D, Dulak J, Kachamakova-Trojanowska N Int J Mol Sci. 2021; 22(14).

PMID: 34299172 PMC: 8303136. DOI: 10.3390/ijms22147553.


Modeling Type 1 Diabetes Using Pluripotent Stem Cell Technology.

Joshi K, Cameron F, Tiwari S, Mannering S, Elefanty A, Stanley E Front Endocrinol (Lausanne). 2021; 12:635662.

PMID: 33868170 PMC: 8047192. DOI: 10.3389/fendo.2021.635662.


HNF4A Haploinsufficiency in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced Pluripotent Stem Cells.

Ng N, Jasmen J, Lim C, Lau H, Krishnan V, Kadiwala J iScience. 2019; 16:192-205.

PMID: 31195238 PMC: 6562146. DOI: 10.1016/j.isci.2019.05.032.


References
1.
Yusa K, Rashid S, Strick-Marchand H, Varela I, Liu P, Paschon D . Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011; 478(7369):391-4. PMC: 3198846. DOI: 10.1038/nature10424. View

2.
Wang H, Jin Y, Reddy M, Podolsky R, Liu S, Yang P . Genetically dependent ERBB3 expression modulates antigen presenting cell function and type 1 diabetes risk. PLoS One. 2010; 5(7):e11789. PMC: 2909911. DOI: 10.1371/journal.pone.0011789. View

3.
Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Collins F . Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009; 106(23):9362-7. PMC: 2687147. DOI: 10.1073/pnas.0903103106. View

4.
Tews D, Fischer-Posovszky P, Wabitsch M . Regulation of FTO and FTM expression during human preadipocyte differentiation. Horm Metab Res. 2010; 43(1):17-21. DOI: 10.1055/s-0030-1265130. View

5.
Zou J, Mali P, Huang X, Dowey S, Cheng L . Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011; 118(17):4599-608. PMC: 3208277. DOI: 10.1182/blood-2011-02-335554. View