» Articles » PMID: 26381090

Compensatory T-type Ca2+ Channel Activity Alters D2-autoreceptor Responses of Substantia Nigra Dopamine Neurons from Cav1.3 L-type Ca2+ Channel KO Mice

Overview
Journal Sci Rep
Specialty Science
Date 2015 Sep 19
PMID 26381090
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.

Citing Articles

Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease.

Crivelli S, Gaifullina A, Chatton J Front Neurosci. 2024; 18:1483708.

PMID: 39381683 PMC: 11459774. DOI: 10.3389/fnins.2024.1483708.


Muscarinic receptor activation preferentially inhibits rebound in vulnerable dopaminergic neurons.

Beaver M, Evans R bioRxiv. 2024; .

PMID: 39131326 PMC: 11312546. DOI: 10.1101/2024.07.30.605819.


Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario.

Vaidya B, Padhy D, Joshi H, Sharma S, Singh J Methods Mol Biol. 2024; 2761:529-557.

PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36.


The human channel gating-modifying A749G CACNA1D (Cav1.3) variant induces a neurodevelopmental syndrome-like phenotype in mice.

Ortner N, Sah A, Paradiso E, Shin J, Stojanovic S, Hammer N JCI Insight. 2023; 8(20.

PMID: 37698939 PMC: 10619503. DOI: 10.1172/jci.insight.162100.


Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice.

Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P NPJ Parkinsons Dis. 2023; 9(1):56.

PMID: 37029193 PMC: 10082048. DOI: 10.1038/s41531-023-00500-5.


References
1.
Helton T, Xu W, Lipscombe D . Neuronal L-type calcium channels open quickly and are inhibited slowly. J Neurosci. 2005; 25(44):10247-51. PMC: 6725800. DOI: 10.1523/JNEUROSCI.1089-05.2005. View

2.
Hindle J . Ageing, neurodegeneration and Parkinson's disease. Age Ageing. 2010; 39(2):156-61. DOI: 10.1093/ageing/afp223. View

3.
Simms B, Zamponi G . Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014; 82(1):24-45. DOI: 10.1016/j.neuron.2014.03.016. View

4.
Satin J, Schroder E, Crump S . L-type calcium channel auto-regulation of transcription. Cell Calcium. 2011; 49(5):306-13. PMC: 3097264. DOI: 10.1016/j.ceca.2011.01.001. View

5.
Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P . L-type Ca channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal. 2014; 3(2):15-38. PMC: 3968275. DOI: 10.1002/wmts.102. View