» Articles » PMID: 26357016

The GARP Complex is Required for Cellular Sphingolipid Homeostasis

Overview
Journal Elife
Specialty Biology
Date 2015 Sep 11
PMID 26357016
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.

Citing Articles

Endosomal traffic disorders: a driving force behind neurodegenerative diseases.

Dong J, Tong W, Liu M, Liu M, Liu J, Jin X Transl Neurodegener. 2024; 13(1):66.

PMID: 39716330 PMC: 11667944. DOI: 10.1186/s40035-024-00460-7.


Acute GARP depletion disrupts vesicle transport, leading to severe defects in sorting, secretion, and O-glycosylation.

Khakurel A, Pokrovskaya I, Lupashin V bioRxiv. 2024; .

PMID: 39416116 PMC: 11482758. DOI: 10.1101/2024.10.07.617053.


Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in .

Listian S, Mazur A, Kol M, Ufelmann E, Eising S, Frohlich F iScience. 2024; 27(9):110609.

PMID: 39286488 PMC: 11402645. DOI: 10.1016/j.isci.2024.110609.


Involvement of lipid-translocating exporter family proteins in determination of myriocin sensitivity in budding yeast.

Kawaguchi T, Ishibashi Y, Matsuzaki M, Yamagata S, Tani M Biochem Biophys Rep. 2024; 39:101785.

PMID: 39104838 PMC: 11299556. DOI: 10.1016/j.bbrep.2024.101785.


Retinal cells derived from patients with DRAM2-dependent CORD21 dystrophy exhibit key lysosomal enzyme deficiency and lysosomal content accumulation.

Tsikandelova R, Galo E, Cerniauskas E, Hallam D, Georgiou M, Cerna-Chavez R Stem Cell Reports. 2024; 19(8):1107-1121.

PMID: 38964324 PMC: 11368688. DOI: 10.1016/j.stemcr.2024.06.002.


References
1.
Ejsing C, Sampaio J, Surendranath V, Duchoslav E, Ekroos K, Klemm R . Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A. 2009; 106(7):2136-41. PMC: 2650121. DOI: 10.1073/pnas.0811700106. View

2.
Nagiec M, Nagiec E, Baltisberger J, Wells G, Lester R, Dickson R . Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem. 1997; 272(15):9809-17. DOI: 10.1074/jbc.272.15.9809. View

3.
Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A . Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol. 2012; 14(5):542-7. DOI: 10.1038/ncb2480. View

4.
Sullards M, Liu Y, Chen Y, Merrill Jr A . Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta. 2011; 1811(11):838-53. PMC: 3205276. DOI: 10.1016/j.bbalip.2011.06.027. View

5.
Jacquier N, Schneiter R . Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol. 2010; 129(1-2):70-8. DOI: 10.1016/j.jsbmb.2010.11.014. View