» Articles » PMID: 34943782

Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation

Overview
Journal Cells
Publisher MDPI
Date 2021 Dec 24
PMID 34943782
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.

Citing Articles

Genetics of glycosylation in mammalian development and disease.

Stanley P Nat Rev Genet. 2024; 25(10):715-729.

PMID: 38724711 DOI: 10.1038/s41576-024-00725-x.


Two distinct SNARE complexes mediate vesicle fusion with the plasma membrane to ensure effective development and pathogenesis of Fusarium oxysporum f. sp. cubense.

Fang Z, Zhao Q, Yang S, Cai Y, Fang W, Abubakar Y Mol Plant Pathol. 2024; 25(3):e13443.

PMID: 38502146 PMC: 10950013. DOI: 10.1111/mpp.13443.


Intracellular traffic and polarity in brain development.

Polenghi M, Taverna E Front Neurosci. 2023; 17:1172016.

PMID: 37859764 PMC: 10583573. DOI: 10.3389/fnins.2023.1172016.


Mass Spectrometry of Transferrin and Apolipoprotein CIII from Dried Blood Spots for Congenital Disorders of Glycosylation.

Wada Y, Kadoya M, Okamoto N Mass Spectrom (Tokyo). 2023; 11(1):A0113.

PMID: 36713804 PMC: 9853950. DOI: 10.5702/massspectrometry.A0113.


GARP dysfunction results in COPI displacement, depletion of Golgi v-SNAREs and calcium homeostasis proteins.

Khakurel A, Kudlyk T, Pokrovskaya I, DSouza Z, Lupashin V Front Cell Dev Biol. 2022; 10:1066504.

PMID: 36578782 PMC: 9791199. DOI: 10.3389/fcell.2022.1066504.


References
1.
Wu X, Steet R, Bohorov O, Bakker J, Newell J, Krieger M . Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med. 2004; 10(5):518-23. DOI: 10.1038/nm1041. View

2.
Stevenson N, Bergen D, Lu Y, Prada-Sanchez M, Kadler K, Hammond C . Giantin is required for intracellular N-terminal processing of type I procollagen. J Cell Biol. 2021; 220(6). PMC: 8103548. DOI: 10.1083/jcb.202005166. View

3.
Shorter J, Warren G . A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J Cell Biol. 1999; 146(1):57-70. PMC: 2199741. DOI: 10.1083/jcb.146.1.57. View

4.
Medina C, Sandoval R, Oliveira G, Silveira K, Cavalcanti D, Pogue R . Pathogenic variants in the TRIP11 gene cause a skeletal dysplasia spectrum from odontochondrodysplasia to achondrogenesis 1A. Am J Med Genet A. 2020; 182(4):681-688. DOI: 10.1002/ajmg.a.61460. View

5.
Allan B, Moyer B, Balch W . Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science. 2000; 289(5478):444-8. DOI: 10.1126/science.289.5478.444. View