» Articles » PMID: 26286619

A Novel Mechano-enzymatic Cleavage Mechanism Underlies Transthyretin Amyloidogenesis

Abstract

The mechanisms underlying transthyretin-related amyloidosis in vivo remain unclear. The abundance of the 49-127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49-127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49-127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non-amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano-enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49-127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis-mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.

Citing Articles

Misfolding of transthyretin in vivo is controlled by the redox environment and macromolecular crowding.

Jayaweera S, Sahin M, Lundkvist F, Leven A, Tereenstra L, Backman J J Biol Chem. 2024; 301(1):108031.

PMID: 39615680 PMC: 11732491. DOI: 10.1016/j.jbc.2024.108031.


Aggregation of Transthyretin by Fluid Agitation.

Ritsch I, Dyson H, Wright P bioRxiv. 2024; .

PMID: 39605681 PMC: 11601261. DOI: 10.1101/2024.11.08.622726.


RV-PA uncoupling is associated with increased mortality in transthyretin amyloid cardiomyopathy treated with tafamidis.

Schwarting S, Poledniczek M, Metodiev Y, Stolz L, Hofmann E, Hegenbart U Clin Res Cardiol. 2024; .

PMID: 39565387 DOI: 10.1007/s00392-024-02576-2.


Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology.

Salzillo C, Franco R, Ronchi A, Quaranta A, Marzullo A Curr Issues Mol Biol. 2024; 46(10):11519-11536.

PMID: 39451564 PMC: 11506355. DOI: 10.3390/cimb46100684.


Large Transthyretin Aggregates in Plasma of ATTR Amyloidosis Patients: Future Clinical Implications.

Fontana M, Gillmore J, Verona G JACC Basic Transl Sci. 2024; 9(9):1101-1103.

PMID: 39444933 PMC: 11494388. DOI: 10.1016/j.jacbts.2024.07.005.


References
1.
Hyung S, Deroo S, Robinson C . Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem Biol. 2010; 5(12):1137-46. DOI: 10.1021/cb100144v. View

2.
Schneider F, Hammarstrom P, Kelly J . Transthyretin slowly exchanges subunits under physiological conditions: A convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 2001; 10(8):1606-13. PMC: 2374086. DOI: 10.1110/ps.8901. View

3.
Palaninathan S . Nearly 200 X-ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses?. Curr Med Chem. 2012; 19(15):2324-42. DOI: 10.2174/092986712800269335. View

4.
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C . Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006; 65(3):712-25. PMC: 4805110. DOI: 10.1002/prot.21123. View

5.
Westermark P, Sletten K, Johnson K . Ageing and amyloid fibrillogenesis: lessons from apolipoprotein AI, transthyretin and islet amyloid polypeptide. Ciba Found Symp. 1996; 199:205-18; discussion 218-22. DOI: 10.1002/9780470514924.ch13. View