» Articles » PMID: 26243210

A Protein Rotaxane Controls the Translocation of Proteins Across a ClyA Nanopore

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2015 Aug 6
PMID 26243210
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Rotaxanes, pseudorotaxanes, and catenanes are supramolecular complexes with potential use in nanomachinery, molecular computing, and single-molecule studies. Here we constructed a protein rotaxane in which a polypeptide thread is encircled by a Cytolysin A (ClyA) nanopore and capped by two protein stoppers. The rotaxane could be switched between two states. At low negative applied potentials (<-50 mV) one of the protein stoppers resided inside the nanopore indefinitely. Under this configuration the rotaxane prevents the diffusion of protein molecules across the lipid bilayer and provides a useful platform for single-molecule analysis. High negative applied potentials (-100 mV) dismantled the interlocked rotaxane system by the forceful translocation of the protein stopper, allowing new proteins to be trapped inside or transported across the nanopore. The observed voltage threshold for the translocation of the protein stopper through the nanopore related well to the biphasic voltage dependence of the residence time measured for the freely diffusing protein stopper. We propose a model in which molecules translocate through a nanopore when the average dwell time decreases with the applied potential.

Citing Articles

Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force.

Sauciuc A, Morozzo Della Rocca B, Tadema M, Chinappi M, Maglia G Nat Biotechnol. 2023; 42(8):1275-1281.

PMID: 37723268 DOI: 10.1038/s41587-023-01954-x.


Enzyme-less nanopore detection of post-translational modifications within long polypeptides.

Martin-Baniandres P, Lan W, Board S, Romero-Ruiz M, Garcia-Manyes S, Qing Y Nat Nanotechnol. 2023; 18(11):1335-1340.

PMID: 37500774 PMC: 10656283. DOI: 10.1038/s41565-023-01462-8.


Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore.

Jeong K, Ryu M, Kim J, Kim M, Yoo J, Chung M Nat Commun. 2023; 14(1):1461.

PMID: 37015934 PMC: 10073129. DOI: 10.1038/s41467-023-37098-4.


Nanopore sensors for single molecular protein detection: Research progress based on computer simulations.

Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z IET Nanobiotechnol. 2023; 17(3):257-268.

PMID: 36924083 PMC: 10190502. DOI: 10.1049/nbt2.12124.


PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood.

Huang G, Voorspoels A, Abraham Versloot R, van der Heide N, Carlon E, Willems K Angew Chem Int Ed Engl. 2022; 61(34):e202206227.

PMID: 35759385 PMC: 9541544. DOI: 10.1002/anie.202206227.


References
1.
Wong C, Muthukumar M . Polymer capture by electro-osmotic flow of oppositely charged nanopores. J Chem Phys. 2007; 126(16):164903. DOI: 10.1063/1.2723088. View

2.
Wanunu M, Sutin J, McNally B, Chow A, Meller A . DNA translocation governed by interactions with solid-state nanopores. Biophys J. 2008; 95(10):4716-25. PMC: 2576395. DOI: 10.1529/biophysj.108.140475. View

3.
Nivala J, Marks D, Akeson M . Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat Biotechnol. 2013; 31(3):247-50. PMC: 3772521. DOI: 10.1038/nbt.2503. View

4.
Stefureac R, Trivedi D, Marziali A, Lee J . Evidence that small proteins translocate through silicon nitride pores in a folded conformation. J Phys Condens Matter. 2011; 22(45):454133. DOI: 10.1088/0953-8984/22/45/454133. View

5.
Hu H, Leppla S . Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein. PLoS One. 2009; 4(11):e7946. PMC: 2775957. DOI: 10.1371/journal.pone.0007946. View