» Articles » PMID: 35302739

β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low PH

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2022 Mar 18
PMID 35302739
Authors
Affiliations
Soon will be listed here.
Abstract

Biological nanopores are emerging as sensitive single-molecule sensors for proteins and peptides. The heterogeneous charge of a polypeptide chain, however, can complicate or prevent the capture and translocation of peptides and unfolded proteins across nanopores. Here, we show that two β-barrel nanopores, aerolysin and cytotoxin K, cannot efficiently detect proteinogenic peptides from a trypsinated protein under a wide range of conditions. However, the introduction of an acidic-aromatic sensing region in the β-barrel dramatically increased the dwell time and the discrimination of peptides in the nanopore at acidic pH. Surprisingly, despite the fact that the two β-barrel nanopores have a similar diameter and an acidic-aromatic construction, their capture mechanisms differ. The electro-osmotic flow played a dominant role for aerolysin, while the electrophoretic force dominated for cytotoxin K. Nonetheless, both β-barrel nanopores allowed the detection of mixtures of trypsinated peptides, with aerolysin nanopores showing a better resolution for larger peptides and cytotoxin K showing a better resolution for shorter peptides. Therefore, this work provides a generic strategy for modifying nanopores for peptide detection that will be most likely be applicable to other nanopore-forming toxins.

Citing Articles

Nanopore discrimination of rare earth elements.

Sun W, Xiao Y, Wang K, Zhang S, Yao L, Li T Nat Nanotechnol. 2025; .

PMID: 39930101 DOI: 10.1038/s41565-025-01864-w.


Controlled Translocation of Proteins through a Biological Nanopore for Single-Protein Fingerprint Identification.

Sauciuc A, Maglia G Nano Lett. 2024; 24(44):14118-14124.

PMID: 39446065 PMC: 11544688. DOI: 10.1021/acs.nanolett.4c04510.


Blobs form during the single-file transport of proteins across nanopores.

Sauciuc A, Whittaker J, Tadema M, Tych K, Guskov A, Maglia G Proc Natl Acad Sci U S A. 2024; 121(38):e2405018121.

PMID: 39264741 PMC: 11420176. DOI: 10.1073/pnas.2405018121.


Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective.

Wiswedel R, Bui A, Kim J, Lee M Biosensors (Basel). 2024; 14(7).

PMID: 39056622 PMC: 11274599. DOI: 10.3390/bios14070345.


Nanopore analysis of cis-diols in fruits.

Fan P, Cao Z, Zhang S, Wang Y, Xiao Y, Jia W Nat Commun. 2024; 15(1):1969.

PMID: 38443434 PMC: 10915164. DOI: 10.1038/s41467-024-46303-x.


References
1.
Wilson J, Sarthak K, Si W, Gao L, Aksimentiev A . Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model. ACS Sens. 2019; 4(3):634-644. PMC: 6489136. DOI: 10.1021/acssensors.8b01375. View

2.
Van Meervelt V, Soskine M, Singh S, Schuurman-Wolters G, Wijma H, Poolman B . Real-Time Conformational Changes and Controlled Orientation of Native Proteins Inside a Protein Nanoreactor. J Am Chem Soc. 2017; 139(51):18640-18646. PMC: 6150693. DOI: 10.1021/jacs.7b10106. View

3.
Dolinsky T, Nielsen J, McCammon J, Baker N . PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004; 32(Web Server issue):W665-7. PMC: 441519. DOI: 10.1093/nar/gkh381. View

4.
Huo M, Li M, Ying Y, Long Y . Is the Volume Exclusion Model Practicable for Nanopore Protein Sequencing?. Anal Chem. 2021; 93(33):11364-11369. DOI: 10.1021/acs.analchem.1c00851. View

5.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R . SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(W1):W296-W303. PMC: 6030848. DOI: 10.1093/nar/gky427. View