» Articles » PMID: 22849517

An Engineered ClyA Nanopore Detects Folded Target Proteins by Selective External Association and Pore Entry

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2012 Aug 2
PMID 22849517
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

Nanopores have been used in label-free single-molecule studies, including investigations of chemical reactions, nucleic acid analysis, and applications in sensing. Biological nanopores generally perform better than artificial nanopores as sensors, but they have disadvantages including a fixed diameter. Here we introduce a biological nanopore ClyA that is wide enough to sample and distinguish large analyte proteins, which enter the pore lumen. Remarkably, human and bovine thrombins, despite 86% sequence identity, elicit characteristic ionic current blockades, which at -50 mV differ in their main current levels by 26 ± 1 pA. The use of DNA aptamers or hirudin as ligands further distinguished the protein analytes. Finally, we constructed ClyA nanopores decorated with covalently attached aptamers. These nanopores selectively captured and internalized cognate protein analytes but excluded noncognate analytes, in a process that resembles transport by nuclear pores.

Citing Articles

Graphene Nanopore Fabrication and Applications.

Sun Q, Dai M, Hong J, Feng S, Wang C, Yuan Z Int J Mol Sci. 2025; 26(4).

PMID: 40004171 PMC: 11855882. DOI: 10.3390/ijms26041709.


Large and Stable Nanopores Formed by Complement Component 9 for Characterizing Single Folded Proteins.

Chanakul W, Mukhopadhyay A, Awasthi S, Protopopova A, Ianiro A, Mayer M ACS Nano. 2025; 19(5):5240-5252.

PMID: 39871506 PMC: 11823641. DOI: 10.1021/acsnano.4c11666.


Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.

Satheesan R, Janeena A, Mahendran K J Membr Biol. 2024; .

PMID: 39699641 DOI: 10.1007/s00232-024-00331-2.


Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers.

Shorkey S, Zhang Y, Sharp J, Clingman S, Nguyen L, Chen J Biophys J. 2024; 124(1):145-157.

PMID: 39578408 PMC: 11739873. DOI: 10.1016/j.bpj.2024.11.017.


Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective.

Wiswedel R, Bui A, Kim J, Lee M Biosensors (Basel). 2024; 14(7).

PMID: 39056622 PMC: 11274599. DOI: 10.3390/bios14070345.


References
1.
Fologea D, Ledden B, McNabb D, Li J . Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett. 2008; 91(5):539011-539013. PMC: 2288568. DOI: 10.1063/1.2767206. View

2.
Bilokapic S, Schwartz T . 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol. 2012; 24(1):86-91. PMC: 3398480. DOI: 10.1016/j.ceb.2011.12.011. View

3.
Tainsky M . Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta. 2009; 1796(2):176-93. PMC: 2752479. DOI: 10.1016/j.bbcan.2009.04.004. View

4.
Grossman E, Medalia O, Zwerger M . Functional architecture of the nuclear pore complex. Annu Rev Biophys. 2012; 41:557-84. DOI: 10.1146/annurev-biophys-050511-102328. View

5.
Howorka S, Nam J, Bayley H, Kahne D . Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew Chem Int Ed Engl. 2004; 43(7):842-6. DOI: 10.1002/anie.200352614. View