» Articles » PMID: 26202974

Allelome.PRO, a Pipeline to Define Allele-specific Genomic Features from High-throughput Sequencing Data

Overview
Specialty Biochemistry
Date 2015 Jul 24
PMID 26202974
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the 'allelome' by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.

Citing Articles

X-linked deletion of Crossfirre, Firre, and Dxz4 in vivo uncovers diverse phenotypes and combinatorial effects on autosomes.

Hasenbein T, Hoelzl S, Smith Z, Gerhardinger C, Gonner M, Aguilar-Pimentel A Nat Commun. 2024; 15(1):10631.

PMID: 39638999 PMC: 11621363. DOI: 10.1038/s41467-024-54673-5.


Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle.

Li J, Lin Y, Li D, He M, Kui H, Bai J Adv Sci (Weinh). 2024; 11(24):e2305706.

PMID: 38582509 PMC: 11200017. DOI: 10.1002/advs.202305706.


Haplotype-resolved 3D chromatin architecture of the hybrid pig.

Lin Y, Li J, Gu Y, Jin L, Bai J, Zhang J Genome Res. 2024; 34(2):310-325.

PMID: 38479837 PMC: 10984390. DOI: 10.1101/gr.278101.123.


Allele-specific regulatory effects on the pig transcriptome.

Lin Y, Li J, Chen L, Bai J, Zhang J, Wang Y Gigascience. 2023; 12.

PMID: 37776365 PMC: 10541795. DOI: 10.1093/gigascience/giad076.


Conservation and divergence of canonical and non-canonical imprinting in murids.

Richard Albert J, Kobayashi T, Inoue A, Monteagudo-Sanchez A, Kumamoto S, Takashima T Genome Biol. 2023; 24(1):48.

PMID: 36918927 PMC: 10012579. DOI: 10.1186/s13059-023-02869-1.


References
1.
Rodriguez I . Singular expression of olfactory receptor genes. Cell. 2013; 155(2):274-7. DOI: 10.1016/j.cell.2013.09.032. View

2.
Lagarrigue S, Martin L, Hormozdiari F, Roux P, Pan C, van Nas A . Analysis of allele-specific expression in mouse liver by RNA-Seq: a comparison with Cis-eQTL identified using genetic linkage. Genetics. 2013; 195(3):1157-66. PMC: 3813844. DOI: 10.1534/genetics.113.153882. View

3.
Babak T, Deveale B, Tsang E, Zhou Y, Li X, Smith K . Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet. 2015; 47(5):544-9. PMC: 4414907. DOI: 10.1038/ng.3274. View

4.
Hudson Q, Seidl C, Kulinski T, Huang R, Warczok K, Bittner R . Extra-embryonic-specific imprinted expression is restricted to defined lineages in the post-implantation embryo. Dev Biol. 2011; 353(2):420-31. PMC: 3081948. DOI: 10.1016/j.ydbio.2011.02.017. View

5.
Wang X, Soloway P, Clark A . A survey for novel imprinted genes in the mouse placenta by mRNA-seq. Genetics. 2011; 189(1):109-22. PMC: 3176116. DOI: 10.1534/genetics.111.130088. View