» Articles » PMID: 25978706

Secretion Systems in Gram-negative Bacteria: Structural and Mechanistic Insights

Overview
Date 2015 May 16
PMID 25978706
Citations 488
Authors
Affiliations
Soon will be listed here.
Abstract

Bacteria have evolved a remarkable array of sophisticated nanomachines to export various virulence factors across the bacterial cell envelope. In recent years, considerable progress has been made towards elucidating the structural and molecular mechanisms of the six secretion systems (types I-VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone-usher pathway and the curli secretion machinery. These advances have greatly enhanced our understanding of the complex mechanisms that these macromolecular structures use to deliver proteins and DNA into the extracellular environment or into target cells. In this Review, we explore the structural and mechanistic relationships between these single- and double-membrane-embedded systems, and we briefly discuss how this knowledge can be exploited for the development of new antimicrobial strategies.

Citing Articles

Advancements in Escherichia coli secretion systems for enhanced recombinant protein production.

Lokireddy S, Kunchala S, Vadde R World J Microbiol Biotechnol. 2025; 41(3):90.

PMID: 40025370 DOI: 10.1007/s11274-025-04302-0.


Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK.

Molinari G, Ribeiro S, Muller K, Mayer B, Rohde M, Arce-Rodriguez A Microb Biotechnol. 2025; 18(2):e70096.

PMID: 39937155 PMC: 11816700. DOI: 10.1111/1751-7915.70096.


MXene-Derived Multifunctional Biomaterials: New Opportunities for Wound Healing.

Luo D, Zhang H, Xuanyuan X, Deng D, Lu Z, Liu W Biomater Res. 2025; 29:0143.

PMID: 39935790 PMC: 11811641. DOI: 10.34133/bmr.0143.


Contrastive-learning of language embedding and biological features for cross modality encoding and effector prediction.

Peng Y, Wu J, Sun Y, Zhang Y, Wang Q, Shao S Nat Commun. 2025; 16(1):1299.

PMID: 39900608 PMC: 11791096. DOI: 10.1038/s41467-025-56526-1.


Artificial Intelligence Methods in Infection Biology Research.

Anter J, Yakimovich A Methods Mol Biol. 2025; 2890:291-333.

PMID: 39890733 DOI: 10.1007/978-1-0716-4326-6_15.


References
1.
Wang X, Smith D, Jones J, Chapman M . In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem. 2006; 282(6):3713-9. PMC: 2838475. DOI: 10.1074/jbc.M609228200. View

2.
Abendroth J, Murphy P, Sandkvist M, Bagdasarian M, Hol W . The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol. 2005; 348(4):845-55. DOI: 10.1016/j.jmb.2005.02.061. View

3.
Cegelski L, Pinkner J, Hammer N, Cusumano C, Hung C, Chorell E . Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol. 2009; 5(12):913-9. PMC: 2838449. DOI: 10.1038/nchembio.242. View

4.
Silverman J, Agnello D, Zheng H, Andrews B, Li M, Catalano C . Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell. 2013; 51(5):584-93. PMC: 3844553. DOI: 10.1016/j.molcel.2013.07.025. View

5.
Koronakis V, Eswaran J, Hughes C . Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem. 2004; 73:467-89. DOI: 10.1146/annurev.biochem.73.011303.074104. View