» Articles » PMID: 25976444

Enzyme-activated Intracellular Drug Delivery with Tubule Clay Nanoformulation

Overview
Journal Sci Rep
Specialty Science
Date 2015 May 16
PMID 25976444
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

Citing Articles

Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques.

Hamdy N, Eskander G, Basalious E Int J Nanomedicine. 2022; 17:6131-6155.

PMID: 36514378 PMC: 9741821. DOI: 10.2147/IJN.S386037.


Nanoclays in medicine: a new frontier of an ancient medical practice.

Katti K, Jasuja H, Jaswandkar S, Mohanty S, Katti D Mater Adv. 2022; 3(20):7484-7500.

PMID: 36324871 PMC: 9577303. DOI: 10.1039/d2ma00528j.


Nano-Clays for Cancer Therapy: State-of-the Art and Future Perspectives.

Persano F, Leporatti S J Pers Med. 2022; 12(10).

PMID: 36294875 PMC: 9605470. DOI: 10.3390/jpm12101736.


Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field.

Biddeci G, Spinelli G, Colomba P, Di Blasi F Int J Mol Sci. 2022; 23(19).

PMID: 36232811 PMC: 9570192. DOI: 10.3390/ijms231911518.


Architectural design of core-shell nanotube systems based on aluminosilicate clay.

Stavitskaya A, Rubtsova M, Glotov A, Vinokurov V, Vutolkina A, Fakhrullin R Nanoscale Adv. 2022; 4(13):2823-2835.

PMID: 36132000 PMC: 9419087. DOI: 10.1039/d2na00163b.


References
1.
Hilder T, Hill J . Modeling the loading and unloading of drugs into nanotubes. Small. 2008; 5(3):300-8. DOI: 10.1002/smll.200800321. View

2.
Lvov Y, Aerov A, Fakhrullin R . Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interface Sci. 2013; 207:189-98. DOI: 10.1016/j.cis.2013.10.006. View

3.
Pasparakis G, Manouras T, Vamvakaki M, Argitis P . Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat Commun. 2014; 5:3623. PMC: 3988806. DOI: 10.1038/ncomms4623. View

4.
Zhang X, Zheng Y, Fried L, Du Y, Montano S, Sohn A . Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic Biol Med. 2011; 50(7):811-20. PMC: 3047390. DOI: 10.1016/j.freeradbiomed.2010.12.036. View

5.
Wang S, Wang H, Liu Z, Wang L, Wang X, Su L . Smart pH- and reduction-dual-responsive folate-PEG-coated polymeric lipid vesicles for tumor-triggered targeted drug delivery. Nanoscale. 2014; 6(13):7635-42. DOI: 10.1039/c4nr00843j. View