» Articles » PMID: 24150417

Stimuli-responsive Nanocarriers for Drug Delivery

Overview
Journal Nat Mater
Date 2013 Oct 24
PMID 24150417
Citations 1187
Authors
Affiliations
Soon will be listed here.
Abstract

Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).

Citing Articles

Modulating the Aqueous Micellar Reorganization of Sequence-Defined Ionic Peptoid Block Copolymers by Ionizable Monomer Position and Solution pH.

Barrett B, AziziHariri P, John V, Zhang D Macromolecules. 2025; 58(4):1851-1858.

PMID: 40026448 PMC: 11866915. DOI: 10.1021/acs.macromol.4c02829.


Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives.

Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S J Nanobiotechnology. 2025; 23(1):157.

PMID: 40022098 PMC: 11871784. DOI: 10.1186/s12951-025-03252-x.


Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core-Shell Structure and Fluorescent Feature for Hela Cell.

Ge H, Wang X, Bai S, Bi Y, Liu F, Sun J Pharmaceutics. 2025; 17(2).

PMID: 40006572 PMC: 11859581. DOI: 10.3390/pharmaceutics17020206.


Aggregation-Caused Quenching Dyes as Potent Tools to Track the Integrity of Antitumor Nanocarriers: A Mini-Review.

Wang X, Huang J, Guo M, Zhong Y, Huang Z Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40005990 PMC: 11859028. DOI: 10.3390/ph18020176.


Nanomaterials Enhanced Sonodynamic Therapy for Multiple Tumor Treatment.

Yang M, Wang X, Peng M, Wang F, Hou S, Xing R Nanomicro Lett. 2025; 17(1):157.

PMID: 39992547 PMC: 11850698. DOI: 10.1007/s40820-025-01666-8.


References
1.
Yang H, Hua M, Liu H, Huang C, Tsai R, Lu Y . Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials. 2011; 32(27):6523-32. DOI: 10.1016/j.biomaterials.2011.05.047. View

2.
Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M . Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2009; 142(1):108-21. DOI: 10.1016/j.jconrel.2009.10.002. View

3.
Muthana M, Scott S, Farrow N, Morrow F, Murdoch C, Grubb S . A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 2008; 15(12):902-10. DOI: 10.1038/gt.2008.57. View

4.
Zhu L, Kate P, Torchilin V . Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano. 2012; 6(4):3491-8. PMC: 3337349. DOI: 10.1021/nn300524f. View

5.
Chorny M, Hood E, Levy R, Muzykantov V . Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release. 2010; 146(1):144-51. PMC: 2914110. DOI: 10.1016/j.jconrel.2010.05.003. View