» Articles » PMID: 25935162

Community Challenges in Biomedical Text Mining over 10 Years: Success, Failure and the Future

Overview
Journal Brief Bioinform
Specialty Biology
Date 2015 May 4
PMID 25935162
Citations 83
Authors
Affiliations
Soon will be listed here.
Abstract

One effective way to improve the state of the art is through competitions. Following the success of the Critical Assessment of protein Structure Prediction (CASP) in bioinformatics research, a number of challenge evaluations have been organized by the text-mining research community to assess and advance natural language processing (NLP) research for biomedicine. In this article, we review the different community challenge evaluations held from 2002 to 2014 and their respective tasks. Furthermore, we examine these challenge tasks through their targeted problems in NLP research and biomedical applications, respectively. Next, we describe the general workflow of organizing a Biomedical NLP (BioNLP) challenge and involved stakeholders (task organizers, task data producers, task participants and end users). Finally, we summarize the impact and contributions by taking into account different BioNLP challenges as a whole, followed by a discussion of their limitations and difficulties. We conclude with future trends in BioNLP challenge evaluations.

Citing Articles

Automatic extraction of transcriptional regulatory interactions of bacteria from biomedical literature using a BERT-based approach.

Varela-Vega A, Posada-Reyes A, Mendez-Cruz C Database (Oxford). 2024; 2024.

PMID: 39213391 PMC: 11363960. DOI: 10.1093/database/baae094.


Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes.

Jonker R, Almeida T, Antunes R, Almeida J, Matos S Database (Oxford). 2024; 2024.

PMID: 39083461 PMC: 11290360. DOI: 10.1093/database/baae068.


Identifying symptom etiologies using syntactic patterns and large language models.

Taub-Tabib H, Shamay Y, Shlain M, Pinhasov M, Polak M, Tiktinsky A Sci Rep. 2024; 14(1):16190.

PMID: 39003296 PMC: 11246441. DOI: 10.1038/s41598-024-65645-6.


DUVEL: an active-learning annotated biomedical corpus for the recognition of oligogenic combinations.

Nachtegael C, De Stefani J, Cnudde A, Lenaerts T Database (Oxford). 2024; 2024.

PMID: 38805753 PMC: 11131422. DOI: 10.1093/database/baae039.


MetaTron: advancing biomedical annotation empowering relation annotation and collaboration.

Irrera O, Marchesin S, Silvello G BMC Bioinformatics. 2024; 25(1):112.

PMID: 38486137 PMC: 10941452. DOI: 10.1186/s12859-024-05730-9.


References
1.
Rebholz-Schuhmann D, Jimeno Yepes A, Li C, Kafkas S, Lewin I, Kang N . Assessment of NER solutions against the first and second CALBC Silver Standard Corpus. J Biomed Semantics. 2011; 2 Suppl 5:S11. PMC: 3239301. DOI: 10.1186/2041-1480-2-S5-S11. View

2.
Arighi C, Wu C, Cohen K, Hirschman L, Krallinger M, Valencia A . BioCreative-IV virtual issue. Database (Oxford). 2014; 2014. PMC: 4030502. DOI: 10.1093/database/bau039. View

3.
Burger J, Doughty E, Khare R, Wei C, Mishra R, Aberdeen J . Hybrid curation of gene-mutation relations combining automated extraction and crowdsourcing. Database (Oxford). 2014; 2014. PMC: 4170591. DOI: 10.1093/database/bau094. View

4.
Magrane M . UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011; 2011:bar009. PMC: 3070428. DOI: 10.1093/database/bar009. View

5.
Khare R, Wei C, Mao Y, Leaman R, Lu Z . tmBioC: improving interoperability of text-mining tools with BioC. Database (Oxford). 2014; 2014. PMC: 4110697. DOI: 10.1093/database/bau073. View