» Articles » PMID: 25921526

An Oncogenic Role for Alternative NF-κB Signaling in DLBCL Revealed Upon Deregulated BCL6 Expression

Abstract

Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

Citing Articles

NF-ΚB Activation as a Key Driver in Chronic Lymphocytic Leukemia Evolution to Richter's Syndrome: Unraveling the Influence of Immune Microenvironment Dynamics.

Rohan P, Binato R, Abdelhay E Genes (Basel). 2024; 15(11).

PMID: 39596634 PMC: 11593636. DOI: 10.3390/genes15111434.


Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review.

Masnikosa R, Cvetkovic Z, Piric D Int J Mol Sci. 2024; 25(21).

PMID: 39518937 PMC: 11545713. DOI: 10.3390/ijms252111384.


LTBR acts as a novel immune checkpoint of tumor-associated macrophages for cancer immunotherapy.

Wang L, Fan J, Wu S, Cheng S, Zhao J, Fan F Imeta. 2024; 3(5):e233.

PMID: 39429877 PMC: 11487550. DOI: 10.1002/imt2.233.


Associations of (rs867186), (rs237025), (rs13278372) Polymorphisms and , , Protein Levels with Clinical and Morphological Features of Pituitary Adenomas.

Zaliunas B, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R Cancers (Basel). 2024; 16(14).

PMID: 39061149 PMC: 11274473. DOI: 10.3390/cancers16142509.


Signaling pathways in liver cancer: pathogenesis and targeted therapy.

Xue Y, Ruan Y, Wang Y, Xiao P, Xu J Mol Biomed. 2024; 5(1):20.

PMID: 38816668 PMC: 11139849. DOI: 10.1186/s43556-024-00184-0.


References
1.
Tunyaplin C, Shaffer A, Angelin-Duclos C, Yu X, Staudt L, Calame K . Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol. 2004; 173(2):1158-65. DOI: 10.4049/jimmunol.173.2.1158. View

2.
Rossi D, Deaglio S, Dominguez-Sola D, Rasi S, Vaisitti T, Agostinelli C . Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma. Blood. 2011; 118(18):4930-4. DOI: 10.1182/blood-2011-06-359166. View

3.
Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U . Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science. 1995; 267(5203):1485-8. DOI: 10.1126/science.7878466. View

4.
Traenckner E, Pahl H, Henkel T, Schmidt K, Wilk S, Baeuerle P . Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 1995; 14(12):2876-83. PMC: 398406. DOI: 10.1002/j.1460-2075.1995.tb07287.x. View

5.
Ye B, Cattoretti G, Shen Q, Zhang J, Hawe N, De Waard R . The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997; 16(2):161-70. DOI: 10.1038/ng0697-161. View