» Articles » PMID: 25906246

Micromilling: a Method for Ultra-rapid Prototyping of Plastic Microfluidic Devices

Overview
Journal Lab Chip
Specialties Biotechnology
Chemistry
Date 2015 Apr 24
PMID 25906246
Citations 136
Authors
Affiliations
Soon will be listed here.
Abstract

This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on "how-to" aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices.

Citing Articles

Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges.

Tarn M, Shaw K, Foster P, West J, Johnston I, McCluskey D Biomicrofluidics. 2025; 19(1):011502.

PMID: 40041008 PMC: 11878220. DOI: 10.1063/5.0236911.


Microfluidics engineering towards personalized oncology-a review.

Mishra S, Kumarasamy M In Vitro Model. 2025; 2(3-4):69-81.

PMID: 39871996 PMC: 11756504. DOI: 10.1007/s44164-023-00054-z.


Component library creation and pixel array generation with micromilled droplet microfluidics.

McIntyre D, Arguijo D, Kawata K, Densmore D Microsyst Nanoeng. 2025; 11(1):6.

PMID: 39809750 PMC: 11733136. DOI: 10.1038/s41378-024-00839-6.


Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring.

Duan H, Peng S, He S, Tang S, Goda K, Wang C Adv Sci (Weinh). 2024; 12(2):e2411433.

PMID: 39588557 PMC: 11727287. DOI: 10.1002/advs.202411433.


Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles.

Pham H, Vo V, Nguyen T Drug Deliv Transl Res. 2024; .

PMID: 39557783 DOI: 10.1007/s13346-024-01740-5.


References
1.
Hatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C . Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone. 1999; 25(4):439-45. DOI: 10.1016/s8756-3282(99)00192-1. View

2.
Anselme K, Bigerelle M, Noel B, DuFresne E, Judas D, Iost A . Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 1999; 49(2):155-66. DOI: 10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j. View

3.
Becker H, Gartner C . Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000; 21(1):12-26. DOI: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. View

4.
Deligianni D, Katsala N, Koutsoukos P, Missirlis Y . Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000; 22(1):87-96. DOI: 10.1016/s0142-9612(00)00174-5. View

5.
Wabuyele M, Ford S, Stryjewski W, Barrow J, Soper S . Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis. 2001; 22(18):3939-48. DOI: 10.1002/1522-2683(200110)22:18<3939::AID-ELPS3939>3.0.CO;2-9. View