Bakhtiari N, Ihlemann J
Discov Nano. 2024; 19(1):46.
PMID: 38485854
PMC: 10940550.
DOI: 10.1186/s11671-024-03987-w.
Tony A, Badea I, Yang C, Liu Y, Wang K, Yang S
Polymers (Basel). 2023; 15(4).
PMID: 36850290
PMC: 9958961.
DOI: 10.3390/polym15041006.
Lopresti F, Patella B, Divita V, Zanca C, Botta L, Radacsi N
Sensors (Basel). 2022; 22(21).
PMID: 36365929
PMC: 9654961.
DOI: 10.3390/s22218223.
Trinh K, Thai D, Lee N
Micromachines (Basel). 2022; 13(9).
PMID: 36144126
PMC: 9501821.
DOI: 10.3390/mi13091503.
Giri K, Tsao C
Micromachines (Basel). 2022; 13(3).
PMID: 35334777
PMC: 8949906.
DOI: 10.3390/mi13030486.
Microfluidic technology and its application in the point-of-care testing field.
Xie Y, Dai L, Yang Y
Biosens Bioelectron X. 2022; 10:100109.
PMID: 35075447
PMC: 8769924.
DOI: 10.1016/j.biosx.2022.100109.
Pressure-Free Assembling of Poly(methyl methacrylate) Microdevices via Microwave-Assisted Solvent Bonding and Its Biomedical Applications.
Trinh K, Chae W, Lee N
Biosensors (Basel). 2021; 11(12).
PMID: 34940283
PMC: 8699324.
DOI: 10.3390/bios11120526.
Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
Amarasekara C, Rathnayaka C, Athapattu U, Zhang L, Choi J, Park S
J Chromatogr A. 2021; 1638:461892.
PMID: 33477027
PMC: 8107831.
DOI: 10.1016/j.chroma.2021.461892.
Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
Tsao C
Micromachines (Basel). 2018; 7(12).
PMID: 30404397
PMC: 6189853.
DOI: 10.3390/mi7120225.
A review on wax printed microfluidic paper-based devices for international health.
Altundemir S, Uguz A, Ulgen K
Biomicrofluidics. 2017; 11(4):041501.
PMID: 28936274
PMC: 5577007.
DOI: 10.1063/1.4991504.
Thermoplastic nanofluidic devices for biomedical applications.
Weerakoon-Ratnayake K, ONeil C, Uba F, Soper S
Lab Chip. 2016; 17(3):362-381.
PMID: 28009883
PMC: 5285477.
DOI: 10.1039/c6lc01173j.
Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.
Weerakoon-Ratnayake K, Uba F, Oliver-Calixte N, Soper S
Anal Chem. 2016; 88(7):3569-77.
PMID: 26963496
PMC: 5555359.
DOI: 10.1021/acs.analchem.5b04065.
Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices.
Guckenberger D, de Groot T, Wan A, Beebe D, Young E
Lab Chip. 2015; 15(11):2364-78.
PMID: 25906246
PMC: 4439323.
DOI: 10.1039/c5lc00234f.
High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
Uba F, Hu B, Weerakoon-Ratnayake K, Oliver-Calixte N, Soper S
Lab Chip. 2014; 15(4):1038-49.
PMID: 25511610
PMC: 4315742.
DOI: 10.1039/c4lc01254b.
Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
Uba F, Pullagurla S, Sirasunthorn N, Wu J, Park S, Chantiwas R
Analyst. 2014; 140(1):113-26.
PMID: 25369728
PMC: 4280799.
DOI: 10.1039/c4an01439a.
Review article: Fabrication of nanofluidic devices.
Duan C, Wang W, Xie Q
Biomicrofluidics. 2013; 7(2):26501.
PMID: 23573176
PMC: 3612116.
DOI: 10.1063/1.4794973.
How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte.
Alrifaiy A, Ramser K
Biomed Opt Express. 2011; 2(8):2299-306.
PMID: 21833366
PMC: 3149527.
DOI: 10.1364/BOE.2.002299.
Flexible fabrication and applications of polymer nanochannels and nanoslits.
Chantiwas R, Park S, Soper S, Kim B, Takayama S, Sunkara V
Chem Soc Rev. 2011; 40(7):3677-702.
PMID: 21442106
PMC: 4773912.
DOI: 10.1039/c0cs00138d.