6.
Decker D, Oberg C, Kleczkowski L
. Identification and characterization of inhibitors of UDP-glucose and UDP-sugar pyrophosphorylases for in vivo studies. Plant J. 2017; 90(6):1093-1107.
DOI: 10.1111/tpj.13531.
View
7.
Soares J, Gentile A, Scorsato V, Lima A, Kiyota E, Dos Santos M
. Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase. J Biol Chem. 2014; 289(48):33364-77.
PMC: 4246093.
DOI: 10.1074/jbc.M114.590125.
View
8.
Elling L, Kula M
. Purification of UDP-glucose pyrophosphorylase from germinated barley (malt). J Biotechnol. 1994; 34(2):157-63.
DOI: 10.1016/0168-1656(94)90085-x.
View
9.
Meng M, Geisler M, Johansson H, Mellerowicz E, Karpinski S, Kleczkowski L
. Differential tissue/organ-dependent expression of two sucrose- and cold-responsive genes for UDP-glucose pyrophosphorylase in Populus. Gene. 2007; 389(2):186-95.
DOI: 10.1016/j.gene.2006.11.006.
View
10.
Decker D, Kleczkowski L
. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases. Front Plant Sci. 2017; 8:1610.
PMC: 5609113.
DOI: 10.3389/fpls.2017.01610.
View
11.
Ebrecht A, Asencion Diez M, Piattoni C, Guerrero S, Iglesias A
. The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate. Biochim Biophys Acta. 2014; 1850(1):88-96.
DOI: 10.1016/j.bbagen.2014.10.002.
View
12.
Weber J, Senior A
. Location and properties of pyrophosphate-binding sites in Escherichia coli F1-ATPase. J Biol Chem. 1995; 270(21):12653-8.
DOI: 10.1074/jbc.270.21.12653.
View
13.
McCoy J, Bitto E, Bingman C, Wesenberg G, Bannen R, Kondrashov D
. Structure and dynamics of UDP-glucose pyrophosphorylase from Arabidopsis thaliana with bound UDP-glucose and UTP. J Mol Biol. 2006; 366(3):830-41.
PMC: 1847403.
DOI: 10.1016/j.jmb.2006.11.059.
View
14.
Kim G, Weiss S, Levine R
. Methionine oxidation and reduction in proteins. Biochim Biophys Acta. 2013; 1840(2):901-5.
PMC: 3766491.
DOI: 10.1016/j.bbagen.2013.04.038.
View
15.
Yan S, Tang Z, Su W, Sun W
. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics. 2005; 5(1):235-44.
DOI: 10.1002/pmic.200400853.
View
16.
Kleczkowski L, Decker D
. Effects of Magnesium, Pyrophosphate and Phosphonates on Pyrophosphorolytic Reaction of UDP-Glucose Pyrophosphorylase. Plants (Basel). 2022; 11(12).
PMC: 9230926.
DOI: 10.3390/plants11121611.
View
17.
Hasanuzzaman M, Nahar K, Anee T, Fujita M
. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants. 2017; 23(2):249-268.
PMC: 5391355.
DOI: 10.1007/s12298-017-0422-2.
View
18.
Carpentier S, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B
. Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics. 2006; 7(1):92-105.
DOI: 10.1002/pmic.200600533.
View
19.
Ciereszko I, Johansson H, Kleczkowski L
. Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J. 2001; 354(Pt 1):67-72.
PMC: 1221629.
DOI: 10.1042/0264-6021:3540067.
View
20.
Martz F, Wilczynska M, Kleczkowski L
. Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylase. Biochem J. 2002; 367(Pt 1):295-300.
PMC: 1222863.
DOI: 10.1042/BJ20020772.
View