» Articles » PMID: 25779043

Quantitative Analysis of Single-molecule Force Spectroscopy on Folded Chromatin Fibers

Overview
Specialty Biochemistry
Date 2015 Mar 18
PMID 25779043
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays.

Citing Articles

Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements.

Nho S, Kim H BMB Rep. 2025; 58(1):24-32.

PMID: 39757199 PMC: 11788527.


Protocol for effective surface passivation for single-molecule studies of chromatin and topoisomerase II.

Le T, Gao X, Ha Park S, Lee J, Inman J, Wang M STAR Protoc. 2024; 6(1):103500.

PMID: 39693223 PMC: 11719840. DOI: 10.1016/j.xpro.2024.103500.


A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin.

Golembeski A, Lequieu J J Phys Chem B. 2024; 128(43):10593-10603.

PMID: 39413416 PMC: 11533178. DOI: 10.1021/acs.jpcb.4c04420.


An Effective Surface Passivation Assay for Single-Molecule Studies of Chromatin and Topoisomerase II.

Le T, Gao X, Ha Park S, Lee J, Inman J, Wang M bioRxiv. 2024; .

PMID: 39386467 PMC: 11463425. DOI: 10.1101/2024.09.25.614989.


Unravelling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers.

Brouwer T, Kaczmarczyk A, Zarguit I, Pham C, Dame R, van Noort J Methods Mol Biol. 2024; 2819:535-572.

PMID: 39028523 DOI: 10.1007/978-1-0716-3930-6_25.


References
1.
Kruithof M, Chien F, De Jager M, van Noort J . Subpiconewton dynamic force spectroscopy using magnetic tweezers. Biophys J. 2007; 94(6):2343-8. PMC: 2257889. DOI: 10.1529/biophysj.107.121673. View

2.
Luger K, Mader A, Richmond R, Sargent D, Richmond T . Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648):251-60. DOI: 10.1038/38444. View

3.
Robinson P, Fairall L, Huynh V, Rhodes D . EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A. 2006; 103(17):6506-11. PMC: 1436021. DOI: 10.1073/pnas.0601212103. View

4.
Luger K, Dechassa M, Tremethick D . New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nat Rev Mol Cell Biol. 2012; 13(7):436-47. PMC: 3408961. DOI: 10.1038/nrm3382. View

5.
Makde R, England J, Yennawar H, Tan S . Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature. 2010; 467(7315):562-6. PMC: 3168546. DOI: 10.1038/nature09321. View