» Articles » PMID: 18583476

Nucleosome Repeat Length and Linker Histone Stoichiometry Determine Chromatin Fiber Structure

Overview
Specialty Science
Date 2008 Jun 28
PMID 18583476
Citations 181
Authors
Affiliations
Soon will be listed here.
Abstract

To understand how nuclear processes involving DNA are regulated, knowledge of the determinants of chromatin condensation is required. From recent structural studies it has been concluded that the formation of the 30-nm chromatin fiber does not require the linker histone. Here, by comparing the linker histone-dependent compaction of long, reconstituted nucleosome arrays with different nucleosome repeat lengths (NRLs), 167 and 197 bp, we establish that the compaction behavior is both NRL- and linker histone-dependent. Only the 197-bp NRL array can form 30-nm higher-order chromatin structure. Importantly for understanding the regulation of compaction, this array shows a cooperative linker histone-dependent compaction. The 167-bp NRL array displays a limited linker histone-dependent compaction, resulting in a thinner and topologically different fiber. These observations provide an explanation for the distribution of NRLs found in nature.

Citing Articles

Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone.

Rafa A, Filliaux S, Lyubchenko Y Int J Mol Sci. 2025; 26(1.

PMID: 39796159 PMC: 11719560. DOI: 10.3390/ijms26010303.


Nucleosome Spacing Can Fine-Tune Higher Order Chromatin Assembly.

Chen L, Maristany M, Farr S, Luo J, Gibson B, Doolittle L bioRxiv. 2025; .

PMID: 39763792 PMC: 11703229. DOI: 10.1101/2024.12.23.627571.


Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements.

Nho S, Kim H BMB Rep. 2025; 58(1):24-32.

PMID: 39757199 PMC: 11788527.


Geometric variations in nucleosomal DNA dictate higher-order chromatin structure and enhancer-promoter communication.

Todolli S, Nizovtseva E, Clauvelin N, Maxian O, Studitsky V, Olson W J Chem Phys. 2024; 161(24).

PMID: 39727280 PMC: 11681976. DOI: 10.1063/5.0240991.


Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application.

Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q Signal Transduct Target Ther. 2024; 9(1):340.

PMID: 39627201 PMC: 11615378. DOI: 10.1038/s41392-024-02030-9.


References
1.
Hizume K, Yoshimura S, Takeyasu K . Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry. 2005; 44(39):12978-89. DOI: 10.1021/bi050623v. View

2.
Carruthers L, Bednar J, Woodcock C, Hansen J . Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry. 1998; 37(42):14776-87. DOI: 10.1021/bi981684e. View

3.
Stafford 3rd W . Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 1992; 203(2):295-301. DOI: 10.1016/0003-2697(92)90316-y. View

4.
Allan J, Hartman P, Crane-Robinson C, Aviles F . The structure of histone H1 and its location in chromatin. Nature. 1980; 288(5792):675-9. DOI: 10.1038/288675a0. View

5.
Finch J, Klug A . Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976; 73(6):1897-901. PMC: 430414. DOI: 10.1073/pnas.73.6.1897. View