» Articles » PMID: 22853911

Mechanisms of SecM-mediated Stalling in the Ribosome

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2012 Aug 3
PMID 22853911
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.

Citing Articles

Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel.

Pardo-Avila F, Kudva R, Levitt M, von Heijne G bioRxiv. 2024; .

PMID: 39229094 PMC: 11370347. DOI: 10.1101/2024.08.20.608737.


The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome.

Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari H, Paternoga H Nat Commun. 2024; 15(1):2431.

PMID: 38503753 PMC: 10951299. DOI: 10.1038/s41467-024-46762-2.


Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans.

Chmielewski D, Wilson E, Pintilie G, Zhao P, Chen M, Schmid M Nat Commun. 2023; 14(1):7175.

PMID: 37935678 PMC: 10630519. DOI: 10.1038/s41467-023-42836-9.


Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior.

McGrath H, cernekova M, Kolar M Biophys J. 2022; 121(23):4443-4451.

PMID: 36335428 PMC: 9748369. DOI: 10.1016/j.bpj.2022.11.004.


Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel.

Kolar M, Nagy G, Kunkel J, Vaiana S, Bock L, Grubmuller H Nucleic Acids Res. 2022; 50(4):2258-2269.

PMID: 35150281 PMC: 8887479. DOI: 10.1093/nar/gkac038.


References
1.
Trabuco L, Villa E, Schreiner E, Harrison C, Schulten K . Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods. 2009; 49(2):174-80. PMC: 2753685. DOI: 10.1016/j.ymeth.2009.04.005. View

2.
Yap M, Bernstein H . The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Mol Cell. 2009; 34(2):201-11. PMC: 2704006. DOI: 10.1016/j.molcel.2009.04.002. View

3.
Armache J, Jarasch A, Anger A, Villa E, Becker T, Bhushan S . Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome. Proc Natl Acad Sci U S A. 2010; 107(46):19754-9. PMC: 2993421. DOI: 10.1073/pnas.1010005107. View

4.
Huber D, Rajagopalan N, Preissler S, Rocco M, Merz F, Kramer G . SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol Cell. 2011; 41(3):343-53. DOI: 10.1016/j.molcel.2010.12.028. View

5.
Sotomayor M, Schulten K . Single-molecule experiments in vitro and in silico. Science. 2007; 316(5828):1144-8. DOI: 10.1126/science.1137591. View