» Articles » PMID: 25741284

From Two Competing Oscillators to One Coupled-clock Pacemaker Cell System

Overview
Journal Front Physiol
Date 2015 Mar 6
PMID 25741284
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

At the beginning of this century, debates regarding "what are the main control mechanisms that ignite the action potential (AP) in heart pacemaker cells" dominated the electrophysiology field. The original theory which prevailed for over 50 years had advocated that the ensemble of surface membrane ion channels (i.e., "M-clock") is sufficient to ignite rhythmic APs. However, more recent experimental evidence in a variety of mammals has shown that the sarcoplasmic reticulum (SR) acts as a "Ca(2+)-clock" rhythmically discharges diastolic local Ca(2+) releases (LCRs) beneath the cell surface membrane. LCRs activate an inward current (likely that of the Na(+)/Ca(2+) exchanger) that prompts the surface membrane "M-clock" to ignite an AP. Theoretical and experimental evidence has mounted to indicate that this clock "crosstalk" operates on a beat-to-beat basis and determines both the AP firing rate and rhythm. Our review is focused on the evolution of experimental definition and numerical modeling of the coupled-clock concept, on how mechanisms intrinsic to pacemaker cell determine both the heart rate and rhythm, and on future directions to develop further the coupled-clock pacemaker cell concept.

Citing Articles

The mechano-electric feedback mediates the dual effect of stretch in mouse sinoatrial tissue.

Arbel Ganon L, Eid R, Hamra M, Yaniv Y J Mol Cell Cardiol Plus. 2025; 5():100042.

PMID: 39802174 PMC: 11708250. DOI: 10.1016/j.jmccpl.2023.100042.


Modelling pacemaker oscillations in lymphatic muscle cells: lengthened action potentials by two distinct system effects.

Hancock E, Macaskill C, Zawieja S, Davis M, Bertram C R Soc Open Sci. 2025; 12(1):241714.

PMID: 39780965 PMC: 11706657. DOI: 10.1098/rsos.241714.


Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments.

Li T, Marashly Q, Kim J, Li N, Chelu M Expert Opin Ther Targets. 2024; 28(5):385-400.

PMID: 38700451 PMC: 11395937. DOI: 10.1080/14728222.2024.2351501.


A dual-clock-driven model of lymphatic muscle cell pacemaking to emulate knock-out of Ano1 or IP3R.

Hancock E, Zawieja S, Macaskill C, Davis M, Bertram C J Gen Physiol. 2023; 155(12).

PMID: 37851028 PMC: 10585120. DOI: 10.1085/jgp.202313355.


IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels.

Zawieja S, Pea G, Broyhill S, Patro A, Bromert K, Li M J Gen Physiol. 2023; 155(12).

PMID: 37851027 PMC: 10585095. DOI: 10.1085/jgp.202313358.


References
1.
Maltsev V, Lakatta E . Numerical models based on a minimal set of sarcolemmal electrogenic proteins and an intracellular Ca(2+) clock generate robust, flexible, and energy-efficient cardiac pacemaking. J Mol Cell Cardiol. 2013; 59:181-95. PMC: 4538696. DOI: 10.1016/j.yjmcc.2013.03.004. View

2.
Christel C, Cardona N, Mesirca P, Herrmann S, Hofmann F, Striessnig J . Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. J Physiol. 2012; 590(24):6327-42. PMC: 3533195. DOI: 10.1113/jphysiol.2012.239954. View

3.
Mesirca P, Torrente A, Mangoni M . T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch. 2014; 466(4):791-9. DOI: 10.1007/s00424-014-1482-6. View

4.
Ju Y, Woodcock E, Allen D, Cannell M . Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J Mol Cell Cardiol. 2012; 53(3):375-81. DOI: 10.1016/j.yjmcc.2012.06.004. View

5.
Yang J, Huang J, Maity B, Gao Z, Lorca R, Gudmundsson H . RGS6, a modulator of parasympathetic activation in heart. Circ Res. 2010; 107(11):1345-9. PMC: 2997524. DOI: 10.1161/CIRCRESAHA.110.224220. View