» Articles » PMID: 24573175

T-type Channels in the Sino-atrial and Atrioventricular Pacemaker Mechanism

Overview
Journal Pflugers Arch
Specialty Physiology
Date 2014 Feb 28
PMID 24573175
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac automaticity is a fundamental physiological function in vertebrates. Heart rate is under the control of several neurotransmitters and hormones and is permanently adjusted by the autonomic nervous system to match the physiological demand of the organism. Several classes of ion channels and proteins involved in intracellular Ca(2+) handling contribute to pacemaker activity. Voltage-dependent T-type Ca(2+) channels are an integral part of the complex mechanism underlying pacemaking. T-type channels also contribute to impulse conduction in mice and humans. Strikingly, T-type channel isoforms are co-expressed in the cardiac conduction system with other ion channels that play a major role in pacemaking such as f- (HCN4) and L-type Cav1.3 channels. Pharmacologic inhibition of T-type channels reduces the spontaneous activity of isolated pacemaker myocytes of the sino-atrial node, the dominant heart rhythmogenic centre. Target inactivation of T-type Cav3.1 channels abolishes I Ca,T in both sino-atrial and atrioventricular myocytes and reduces the daily heart rate of freely moving mice. Cav3.1 channels contribute also to automaticity of the atrioventricular node and to ventricular escape rhythms, thereby stressing the importance of these channels in automaticity of the whole cardiac conduction system. Accordingly, loss-of-function of Cav3.1 channels contributes to severe form of congenital bradycardia and atrioventricular block in paediatric patients.

Citing Articles

Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review.

Shi X, He L, Wang Y, Wu Y, Lin D, Chen C Front Cardiovasc Med. 2024; 11:1488207.

PMID: 39534498 PMC: 11554481. DOI: 10.3389/fcvm.2024.1488207.


Pacemaker Channels and the Chronotropic Response in Health and Disease.

Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C Circ Res. 2024; 134(10):1348-1378.

PMID: 38723033 PMC: 11081487. DOI: 10.1161/CIRCRESAHA.123.323250.


State-of-the-Art Differentiation Protocols for Patient-Derived Cardiac Pacemaker Cells.

Torre E, Mangoni M, Lacampagne A, Meli A, Mesirca P Int J Mol Sci. 2024; 25(6).

PMID: 38542361 PMC: 10970580. DOI: 10.3390/ijms25063387.


Circadian regulation of sinoatrial nodal cell pacemaking function: Dissecting the roles of autonomic control, body temperature, and local circadian rhythmicity.

Li P, Kim J PLoS Comput Biol. 2024; 20(2):e1011907.

PMID: 38408116 PMC: 10927146. DOI: 10.1371/journal.pcbi.1011907.


The T-type calcium channelosome.

Weiss N, Zamponi G Pflugers Arch. 2023; 476(2):163-177.

PMID: 38036777 DOI: 10.1007/s00424-023-02891-z.


References
1.
Chandler N, Greener I, Tellez J, Inada S, Musa H, Molenaar P . Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation. 2009; 119(12):1562-75. DOI: 10.1161/CIRCULATIONAHA.108.804369. View

2.
Huser J, Blatter L, Lipsius S . Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000; 524 Pt 2:415-22. PMC: 2269880. DOI: 10.1111/j.1469-7793.2000.00415.x. View

3.
Boyett M, Honjo H, Kodama I . The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000; 47(4):658-87. DOI: 10.1016/s0008-6363(00)00135-8. View

4.
Mangoni M, Traboulsie A, Leoni A, Couette B, Marger L, Le Quang K . Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006; 98(11):1422-30. DOI: 10.1161/01.RES.0000225862.14314.49. View

5.
Protas L, Robinson R . Mibefradil, an I(Ca,T) blocker, effectively blocks I(Ca,L) in rabbit sinus node cells. Eur J Pharmacol. 2000; 401(1):27-30. DOI: 10.1016/s0014-2999(00)00364-2. View