» Articles » PMID: 25725523

Assay Methods for H2S Biogenesis and Catabolism Enzymes

Overview
Journal Methods Enzymol
Specialty Biochemistry
Date 2015 Mar 2
PMID 25725523
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter.

Citing Articles

Structural and biochemical characterization of an encapsulin-associated rhodanese from Acinetobacter baumannii.

Benisch R, Giessen T Protein Sci. 2024; 33(8):e5129.

PMID: 39073218 PMC: 11284452. DOI: 10.1002/pro.5129.


The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives.

Song Y, Cao S, Sun X, Chen G Mamm Genome. 2024; 35(3):309-323.

PMID: 38834923 DOI: 10.1007/s00335-024-10043-6.


Catalytic specificity and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa.

Pedretti M, Fernandez-Rodriguez C, Conter C, Oyenarte I, Favretto F, Di Matteo A Sci Rep. 2024; 14(1):9364.

PMID: 38654065 PMC: 11039470. DOI: 10.1038/s41598-024-57625-7.


Structural and biochemical characterization of an encapsulin-associated rhodanese from .

Benisch R, Giessen T bioRxiv. 2024; .

PMID: 38464153 PMC: 10925157. DOI: 10.1101/2024.02.19.581022.


Impact of Reactive Sulfur Species on : Modulating Viability, Motility, and Biofilm Degradation Capacity.

Ye J, Salti T, Zanditenas E, Trebicz-Geffen M, Benhar M, Ankri S Antioxidants (Basel). 2024; 13(2).

PMID: 38397843 PMC: 10886169. DOI: 10.3390/antiox13020245.


References
1.
Kabil O, Banerjee R . Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2013; 20(5):770-82. PMC: 3910450. DOI: 10.1089/ars.2013.5339. View

2.
Kabil O, Motl N, Banerjee R . H2S and its role in redox signaling. Biochim Biophys Acta. 2014; 1844(8):1355-66. PMC: 4048824. DOI: 10.1016/j.bbapap.2014.01.002. View

3.
Vitvitsky V, Kabil O, Banerjee R . High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal. 2012; 17(1):22-31. PMC: 3342560. DOI: 10.1089/ars.2011.4310. View

4.
Abeles R, WALSH C . Acetylenic enzyme inactivators. Inactivation of gamma-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc. 1973; 95(18):6124-5. DOI: 10.1021/ja00799a053. View

5.
Wood J . Sulfane sulfur. Methods Enzymol. 1987; 143:25-9. DOI: 10.1016/0076-6879(87)43009-7. View