» Articles » PMID: 25691886

Lineage-specific Evolution of Methylthioalkylmalate Synthases (MAMs) Involved in Glucosinolates Biosynthesis

Overview
Journal Front Plant Sci
Date 2015 Feb 19
PMID 25691886
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Methylthioalkylmalate synthases (MAMs) encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species.

Citing Articles

Allyl isothiocyanate and 6-(methylsulfinyl) hexyl isothiocyanate contents vary among wild and cultivated wasabi ().

Yamane K, Yamada-Kato T, Haga N, Ishida K, Murayama S, Kobayashi K Breed Sci. 2023; 73(3):237-245.

PMID: 37840977 PMC: 10570882. DOI: 10.1270/jsbbs.22080.


Complementing model species with model clades.

Mabry M, Abrahams R, Al-Shehbaz I, Baker W, Barak S, Barker M Plant Cell. 2023; 36(5):1205-1226.

PMID: 37824826 PMC: 11062466. DOI: 10.1093/plcell/koad260.


Genomic Origin and Diversification of the Glucosinolate MAM Locus.

Abrahams R, Pires J, Schranz M Front Plant Sci. 2020; 11:711.

PMID: 32582245 PMC: 7289053. DOI: 10.3389/fpls.2020.00711.


Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of methylthioalkylmalate synthase 1.

Petersen A, Hansen L, Mirza N, Crocoll C, Mirza O, Halkier B Biosci Rep. 2019; 39(7).

PMID: 31175145 PMC: 6603273. DOI: 10.1042/BSR20190446.


A naturally occurring variation in the gene is associated with aliphatic glucosinolate accumulation in leaves.

Zhang J, Wang H, Liu Z, Liang J, Wu J, Cheng F Hortic Res. 2018; 5:69.

PMID: 30534387 PMC: 6269504. DOI: 10.1038/s41438-018-0074-6.


References
1.
Dassanayake M, Oh D, Haas J, Hernandez A, Hong H, Ali S . The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 2011; 43(9):913-8. PMC: 3586812. DOI: 10.1038/ng.889. View

2.
Haudry A, Platts A, Vello E, Hoen D, Leclercq M, Williamson R . An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013; 45(8):891-8. DOI: 10.1038/ng.2684. View

3.
Kroymann J, Textor S, Tokuhisa J, Falk K, Bartram S, Gershenzon J . A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 2001; 127(3):1077-88. PMC: 129277. View

4.
Cheng F, Wu J, Fang L, Wang X . Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci. 2012; 3:198. PMC: 3430884. DOI: 10.3389/fpls.2012.00198. View

5.
Spillane C, Schmid K, Laoueille-Duprat S, Pien S, Escobar-Restrepo J, Baroux C . Positive darwinian selection at the imprinted MEDEA locus in plants. Nature. 2007; 448(7151):349-52. DOI: 10.1038/nature05984. View