» Articles » PMID: 23852113

Developmental Origin Dictates Interneuron AMPA and NMDA Receptor Subunit Composition and Plasticity

Overview
Journal Nat Neurosci
Date 2013 Jul 16
PMID 23852113
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit-containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence-dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells.

Citing Articles

Calcium-permeable AMPA receptors govern PV neuron feature selectivity.

Hong I, Kim J, Hainmueller T, Kim D, Keijser J, Johnson R Nature. 2024; 635(8038):398-405.

PMID: 39358515 PMC: 11560848. DOI: 10.1038/s41586-024-08027-2.


A dendritic substrate for temporal diversity of cortical inhibition.

Morabito A, Zerlau Y, Dhanasobhon D, Berthaux E, Tzilivaki A, Moneron G bioRxiv. 2024; .

PMID: 39026855 PMC: 11257522. DOI: 10.1101/2024.07.09.602783.


Loss of postnatal Arx transcriptional activity in parvalbumin interneurons reveals non-cell autonomous disturbances in CA1 pyramidal cells.

Joseph D, von Deimling M, Risbud R, McCoy A, Marsh E Neuroscience. 2024; 558:128-150.

PMID: 38788829 PMC: 11381180. DOI: 10.1016/j.neuroscience.2024.05.020.


D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia.

Zhang X, Xu L, Zhu X, Tang Z, Dong Y, Yu Z Nat Commun. 2023; 14(1):8255.

PMID: 38086803 PMC: 10716516. DOI: 10.1038/s41467-023-43930-8.


Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons.

Camp C, Vlachos A, Klockner C, Krey I, Banke T, Shariatzadeh N Commun Biol. 2023; 6(1):952.

PMID: 37723282 PMC: 10507040. DOI: 10.1038/s42003-023-05298-9.


References
1.
Isaac J, Crair M, Nicoll R, Malenka R . Silent synapses during development of thalamocortical inputs. Neuron. 1997; 18(2):269-80. DOI: 10.1016/s0896-6273(00)80267-6. View

2.
Sanz-Clemente A, Matta J, Isaac J, Roche K . Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron. 2010; 67(6):984-96. PMC: 2947143. DOI: 10.1016/j.neuron.2010.08.011. View

3.
Stoop R, Conquet F, Zuber B, Voronin L, Pralong E . Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections. J Neurosci. 2003; 23(13):5634-44. PMC: 6741217. View

4.
Ito I, Kawakami R, Sakimura K, Mishina M, Sugiyama H . Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses. Neuropharmacology. 2000; 39(6):943-51. DOI: 10.1016/s0028-3908(99)00217-8. View

5.
Traynelis S, Wollmuth L, McBain C, Menniti F, Vance K, Ogden K . Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010; 62(3):405-96. PMC: 2964903. DOI: 10.1124/pr.109.002451. View