A Neuroprosthesis for Control of Seated Balance After Spinal Cord Injury
Overview
Neurology
Rehabilitation Medicine
Authors
Affiliations
Background: A major desire of individuals with spinal cord injury (SCI) is the ability to maintain a stable trunk while in a seated position. Such stability is invaluable during many activities of daily living (ADL) such as regular work in the home and office environments, wheelchair propulsion and driving a vehicle. Functional neuromuscular stimulation (FNS) has the ability to restore function to paralyzed muscles by application of measured low-level currents to the nerves serving those muscles.
Methods: A feedback control system for maintaining seated balance under external perturbations was designed and tested in individuals with thoracic and cervical level spinal cord injuries. The control system relied on a signal related to the tilt of the trunk from the vertical position (which varied between 1.0 ≡ erect posture and 0.0 ≡ most forward flexed posture) derived from a sensor fixed to the sternum to activate the user's own hip and trunk extensor muscles via an implanted neuroprosthesis. A proportional-derivative controller modulated stimulation between trunk tilt values indicating deviation from the erect posture and maximum desired forward flexion. Tests were carried out with external perturbation forces set at 35%, 40% and 45% body-weight (BW) and maximal forward trunk tilt flexion thresholds set at 0.85, 0.75 and 0.70.
Results: Preliminary tests in a case series of five subjects show that the controller could maintain trunk stability in the sagittal plane for perturbations up to 45% of body weight and for flexion thresholds as low as 0.7. The mean settling time varied across subjects from 0.5(±0.4) and 2.0 (±1.1) seconds. Mean response time of the feedback control system varied from 393(±38) ms and 536(±84) ms across the cohort.
Conclusions: The results show the high potential for robust control of seated balance against nominal perturbations in individuals with spinal cord injury and indicates that trunk control with FNS is a promising intervention for individuals with SCI.
Shan M, Li C, Sun J, Xie H, Qi Y, Niu W J Neuroeng Rehabil. 2025; 22(1):4.
PMID: 39780141 PMC: 11708067. DOI: 10.1186/s12984-024-01522-7.
Morrison M, Miller M, Lombardo L, Triolo R, Audu M Sensors (Basel). 2024; 24(12).
PMID: 38931600 PMC: 11207283. DOI: 10.3390/s24123816.
Friederich A, Lombardo L, Foglyano K, Audu M, Triolo R Front Rehabil Sci. 2023; 4:1222174.
PMID: 37841066 PMC: 10568131. DOI: 10.3389/fresc.2023.1222174.
Joshi K, Rejc E, Ugiliweneza B, Harkema S, Angeli C Bioengineering (Basel). 2023; 10(9).
PMID: 37760167 PMC: 10525621. DOI: 10.3390/bioengineering10091065.
Tharu N, Wong A, Zheng Y Bioelectron Med. 2023; 9(1):11.
PMID: 37246214 PMC: 10226194. DOI: 10.1186/s42234-023-00113-6.