» Articles » PMID: 25594871

Cellular Disulfide Bond Formation in Bioactive Peptides and Proteins

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2015 Jan 17
PMID 25594871
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.

Citing Articles

Recent Advances in Barnacle-Inspired Biomaterials in the Field of Biomedical Research.

Min T, Zhang Z, Chen L, Li J Materials (Basel). 2025; 18(3).

PMID: 39942168 PMC: 11818484. DOI: 10.3390/ma18030502.


Transfer of disulfide bond formation modules via yeast artificial chromosomes promotes the expression of heterologous proteins in .

Wu P, Mo W, Tian T, Song K, Lyu Y, Ren H mLife. 2024; 3(1):129-142.

PMID: 38827505 PMC: 11139206. DOI: 10.1002/mlf2.12115.


Enhancing Cellular Uptake of Native Proteins through Bio-Orthogonal Conjugation with Chemically Synthesized Cell-Penetrating Peptides.

Nebogatova J, Porosk L, Hark H, Kurrikoff K Pharmaceutics. 2024; 16(5).

PMID: 38794279 PMC: 11125112. DOI: 10.3390/pharmaceutics16050617.


Coupling thermotolerance and high production of recombinant protein by CYR1 mutation via cAMP signaling cascades.

Ren H, Lan Q, Zhou S, Lyu Y, Yu Y, Zhou J Commun Biol. 2024; 7(1):627.

PMID: 38789513 PMC: 11126729. DOI: 10.1038/s42003-024-06341-z.


Disulfidptosis decoded: a journey through cell death mysteries, regulatory networks, disease paradigms and future directions.

Chen J, Ma B, Yang Y, Wang B, Hao J, Zhou X Biomark Res. 2024; 12(1):45.

PMID: 38685115 PMC: 11059647. DOI: 10.1186/s40364-024-00593-x.


References
1.
Berkmen M . Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif. 2011; 82(1):240-51. DOI: 10.1016/j.pep.2011.10.009. View

2.
Inaba K, Masui S, Iida H, Vavassori S, Sitia R, Suzuki M . Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J. 2010; 29(19):3330-43. PMC: 2957217. DOI: 10.1038/emboj.2010.222. View

3.
Kaomek M, Mizuno K, Fujimura T, Sriyotha P, Ketudat Cairns J . Cloning, expression, and characterization of an antifungal chitinase from Leucaena leucocephala de Wit. Biosci Biotechnol Biochem. 2003; 67(4):667-76. DOI: 10.1271/bbb.67.667. View

4.
Kondo A, Kohda J, Endo Y, Shiromizu T, Kurokawa Y, Nishihara K . Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J Biosci Bioeng. 2005; 90(6):600-6. DOI: 10.1263/jbb.90.600. View

5.
Sevier C, Kaiser C . Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol. 2002; 3(11):836-47. DOI: 10.1038/nrm954. View