Genome-wide Discovery of Human Splicing Branchpoints
Overview
Authors
Affiliations
During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.
Zimmann F, McNicoll F, Thakur P, Blazikova M, Kubovciak J, Hernandez Canas M Cell Mol Life Sci. 2025; 82(1):103.
PMID: 40045025 PMC: 11883072. DOI: 10.1007/s00018-025-05621-z.
Damianov A, Lin C, Zhang J, Manley J, Black D bioRxiv. 2024; .
PMID: 39605567 PMC: 11601671. DOI: 10.1101/2024.11.18.624191.
A validated heart-specific model for splice-disrupting variants in childhood heart disease.
Lesurf R, Breckpot J, Bouwmeester J, Hanafi N, Jain A, Liang Y Genome Med. 2024; 16(1):119.
PMID: 39402625 PMC: 11476204. DOI: 10.1186/s13073-024-01383-8.
Schobers G, Pennings M, de Vries J, Kwint M, van Reeuwijk J, Galbany J Eur J Hum Genet. 2024; 33(1):56-64.
PMID: 39333430 PMC: 11711235. DOI: 10.1038/s41431-024-01694-9.
Long-read transcriptome sequencing of CLL and MDS patients uncovers molecular effects of mutations.
Pacholewska A, Lienhard M, Bruggemann M, Hanel H, Bilalli L, Konigs A Genome Res. 2024; 34(11):1832-1848.
PMID: 39271291 PMC: 11610591. DOI: 10.1101/gr.279327.124.