» Articles » PMID: 25373908

Mapping the Interaction Sites Between AMPA Receptors and TARPs Reveals a Role for the Receptor N-terminal Domain in Channel Gating

Overview
Journal Cell Rep
Publisher Cell Press
Date 2014 Nov 7
PMID 25373908
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

AMPA-type glutamate receptors (AMPARs) mediate fast neurotransmission at excitatory synapses. The extent and fidelity of postsynaptic depolarization triggered by AMPAR activation are shaped by AMPAR auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). TARPs profoundly influence gating, an effect thought to be mediated by an interaction with the AMPAR ion channel and ligand binding domain (LBD). Here, we show that the distal N-terminal domain (NTD) contributes to TARP modulation. Alterations in the NTD-LBD linker result in TARP-dependent and TARP-selective changes in AMPAR gating. Using peptide arrays, we identify a TARP interaction region on the NTD and define the path of TARP contacts along the LBD surface. Moreover, we map key binding sites on the TARP itself and show that mutation of these residues mediates gating modulation. Our data reveal a TARP-dependent allosteric role for the AMPAR NTD and suggest that TARP binding triggers a drastic reorganization of the AMPAR complex.

Citing Articles

Structure of transmembrane AMPA receptor regulatory protein subunit γ2.

Hale W, Romero A, Koylass N, Warrick C, Qiu Z, Huganir R Nat Commun. 2025; 16(1):671.

PMID: 39809794 PMC: 11733119. DOI: 10.1038/s41467-025-56027-1.


GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites.

Perozzo A, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D Nat Commun. 2023; 14(1):6799.

PMID: 37884493 PMC: 10603098. DOI: 10.1038/s41467-023-42517-7.


Alternative Splicing of the Flip/Flop Cassette and TARP Auxiliary Subunits Engage in a Privileged Relationship That Fine-Tunes AMPA Receptor Gating.

Perozzo A, Brown P, Bowie D J Neurosci. 2023; 43(16):2837-2849.

PMID: 36931708 PMC: 10124957. DOI: 10.1523/JNEUROSCI.2293-22.2023.


Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects.

Golubeva E, Lavrov M, Radchenko E, Palyulin V Biomolecules. 2023; 13(1).

PMID: 36671441 PMC: 9856200. DOI: 10.3390/biom13010056.


GluR2Q and GluR2R AMPA Subunits are not Targets of lypd2 Interaction.

Lauriello A, McVeigh Q, Sung R PLoS One. 2022; 17(11):e0278278.

PMID: 36441793 PMC: 9704558. DOI: 10.1371/journal.pone.0278278.


References
1.
Tomita S, Sekiguchi M, Wada K, Nicoll R, Bredt D . Stargazin controls the pharmacology of AMPA receptor potentiators. Proc Natl Acad Sci U S A. 2006; 103(26):10064-7. PMC: 1502506. DOI: 10.1073/pnas.0603128103. View

2.
Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E . Mechanism of glutamate receptor desensitization. Nature. 2002; 417(6886):245-53. DOI: 10.1038/417245a. View

3.
Nakagawa T, Cheng Y, Ramm E, Sheng M, Walz T . Structure and different conformational states of native AMPA receptor complexes. Nature. 2005; 433(7025):545-9. DOI: 10.1038/nature03328. View

4.
Cho C, St-Gelais F, Zhang W, Tomita S, Howe J . Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron. 2007; 55(6):890-904. DOI: 10.1016/j.neuron.2007.08.024. View

5.
Dutta A, Shrivastava I, Sukumaran M, Greger I, Bahar I . Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure. 2012; 20(11):1838-49. PMC: 3496038. DOI: 10.1016/j.str.2012.08.012. View