» Articles » PMID: 25367295

Structural Basis for Ion Selectivity Revealed by High-resolution Crystal Structure of Mg2+ Channel MgtE

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Nov 5
PMID 25367295
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Magnesium is the most abundant divalent cation in living cells and is crucial to several biological processes. MgtE is a Mg(2+) channel distributed in all domains of life that contributes to the maintenance of cellular Mg(2+) homeostasis. Here we report the high-resolution crystal structures of the transmembrane domain of MgtE, bound to Mg(2+), Mn(2+) and Ca(2+). The high-resolution Mg(2+)-bound crystal structure clearly visualized the hydrated Mg(2+) ion within its selectivity filter. Based on those structures and biochemical analyses, we propose a cation selectivity mechanism for MgtE in which the geometry of the hydration shell of the fully hydrated Mg(2+) ion is recognized by the side-chain carboxylate groups in the selectivity filter. This is in contrast to the K(+)-selective filter of KcsA, which recognizes a dehydrated K(+) ion. Our results further revealed a cation-binding site on the periplasmic side, which regulate channel opening and prevents conduction of near-cognate cations.

Citing Articles

Association between magnesium depletion score and the prevalence of kidney stones in the low primary income ratio: a cross-sectional study of NHANES 2007-2018.

Wang J, Xiao Y, Yang Y, Yin S, Cui J, Huang K Int J Surg. 2024; 110(12):7636-7646.

PMID: 38874472 PMC: 11634088. DOI: 10.1097/JS9.0000000000001822.


The genes and are involved in zinc tolerance of .

Schurmann J, Fischer M, Herzberg M, Reemtsma T, Strommenger B, Werner G Appl Environ Microbiol. 2024; 90(6):e0045324.

PMID: 38752746 PMC: 11218649. DOI: 10.1128/aem.00453-24.


A genetic selection for mutants tolerant to killing by sodium citrate defines a combined role for cation homeostasis and osmotic stress in cell death.

Williams J, Baker J, Zheng H, Dechow S, Fallon J, Murto M mSphere. 2023; 8(5):e0035823.

PMID: 37681985 PMC: 10597346. DOI: 10.1128/msphere.00358-23.


Novel Mg binding sites in the cytoplasmic domain of the MgtE Mg channels revealed by X-ray crystal structures.

Wang M, Zhao Y, Hayashi Y, Ito K, Hattori M Acta Biochim Biophys Sin (Shanghai). 2023; 55(4):683-690.

PMID: 37097058 PMC: 10200709. DOI: 10.3724/abbs.2023067.


Ion selectivity mechanism of the MgtE channel for Mg over Ca.

Teng X, Sheng D, Wang J, Yu Y, Hattori M iScience. 2022; 25(12):105565.

PMID: 36465111 PMC: 9708914. DOI: 10.1016/j.isci.2022.105565.


References
1.
Guskov A, Nordin N, Reynaud A, Engman H, Lundback A, Jong A . Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A. 2012; 109(45):18459-64. PMC: 3494898. DOI: 10.1073/pnas.1210076109. View

2.
Ishijima S, Shigemi Z, Adachi H, Makinouchi N, Sagami I . Functional reconstitution and characterization of the Arabidopsis Mg(2+) transporter AtMRS2-10 in proteoliposomes. Biochim Biophys Acta. 2012; 1818(9):2202-8. DOI: 10.1016/j.bbamem.2012.04.015. View

3.
Eshaghi S, Niegowski D, Kohl A, Molina D, Lesley S, Nordlund P . Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science. 2006; 313(5785):354-7. DOI: 10.1126/science.1127121. View

4.
Hartwig A . Role of magnesium in genomic stability. Mutat Res. 2001; 475(1-2):113-21. DOI: 10.1016/s0027-5107(01)00074-4. View

5.
Adams P, Grosse-Kunstleve R, Hung L, Ioerger T, McCoy A, Moriarty N . PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002; 58(Pt 11):1948-54. DOI: 10.1107/s0907444902016657. View