» Articles » PMID: 25359852

Host Genetic Diversity Enables Ebola Hemorrhagic Fever Pathogenesis and Resistance

Abstract

Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever.

Citing Articles

Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols.

Hu P, Hao Y, Tang W, Diering G, Zou F, Kafri T Viruses. 2025; 17(2).

PMID: 40007031 PMC: 11861806. DOI: 10.3390/v17020276.


Virus Load Kinetics in Lassa Fever Patients Treated With Ribavirin: A Retrospective Cohort Study From Southern Nigeria.

Ogbaini-Emovon E, Akpede G, Okogbenin S, Osagiede E, Tobin E, Asogun D Open Forum Infect Dis. 2024; 11(10):ofae575.

PMID: 39450398 PMC: 11500659. DOI: 10.1093/ofid/ofae575.


Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19.

Baker C, Duso D, Kothapalli N, Hart T, Casey S, Cookenham T Sci Rep. 2024; 14(1):25147.

PMID: 39448712 PMC: 11502910. DOI: 10.1038/s41598-024-77087-1.


Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control.

Wang S, Li W, Wang Z, Yang W, Li E, Xia X Signal Transduct Target Ther. 2024; 9(1):223.

PMID: 39256346 PMC: 11412324. DOI: 10.1038/s41392-024-01917-x.


Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols.

Hu P, Hao Y, Tang W, Diering G, Zou F, Kafri T bioRxiv. 2024; .

PMID: 39229157 PMC: 11370356. DOI: 10.1101/2024.08.20.608805.


References
1.
Yang H, Wang J, Didion J, Buus R, Bell T, Welsh C . Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011; 43(7):648-55. PMC: 3125408. DOI: 10.1038/ng.847. View

2.
Dixon M, Schafer I . Ebola viral disease outbreak--West Africa, 2014. MMWR Morb Mortal Wkly Rep. 2014; 63(25):548-51. PMC: 5779383. View

3.
Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill D . The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome. 2007; 18(6-7):473-81. PMC: 1998888. DOI: 10.1007/s00335-007-9045-1. View

4.
Sato T, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gridley T . Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995; 376(6535):70-4. DOI: 10.1038/376070a0. View

5.
Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S . The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog. 2012; 8(8):e1002847. PMC: 3410889. DOI: 10.1371/journal.ppat.1002847. View