» Articles » PMID: 25344330

MirMark: a Site-level and UTR-level Classifier for MiRNA Target Prediction

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2014 Oct 26
PMID 25344330
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features. By combining Correlation-based Feature Selection with a variety of statistical or machine learning methods for the site- and UTR-level classifiers, mirMark significantly improves the overall predictive performance compared to existing publicly available methods. MirMark is available from https://github.com/lanagarmire/MirMark.

Citing Articles

microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites.

Zacharopoulou E, Paraskevopoulou M, Tastsoglou S, Alexiou A, Karavangeli A, Pierros V Brief Bioinform. 2024; 26(1).

PMID: 39737571 PMC: 11685103. DOI: 10.1093/bib/bbae678.


AEmiGAP: AutoEncoder-Based miRNA-Gene Association Prediction Using Deep Learning Method.

Yoon S, Yoon H, Cho J, Lee K Int J Mol Sci. 2024; 25(23).

PMID: 39684787 PMC: 11641653. DOI: 10.3390/ijms252313075.


The Evolution of Nucleic Acid-Based Diagnosis Methods from the (pre-)CRISPR to CRISPR era and the Associated Machine/Deep Learning Approaches in Relevant RNA Design.

Chakraborty S, Ray Dutta J, Ganesan R, Minary P Methods Mol Biol. 2024; 2847:241-300.

PMID: 39312149 DOI: 10.1007/978-1-0716-4079-1_17.


Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.

Cohen-Davidi E, Veksler-Lublinsky I PLoS Comput Biol. 2024; 20(8):e1012385.

PMID: 39186797 PMC: 11379385. DOI: 10.1371/journal.pcbi.1012385.


GraphTar: applying word2vec and graph neural networks to miRNA target prediction.

Przybyszewski J, Malawski M, Licholai S BMC Bioinformatics. 2023; 24(1):436.

PMID: 37978418 PMC: 10657114. DOI: 10.1186/s12859-023-05564-x.


References
1.
Maragkakis M, Alexiou P, Papadopoulos G, Reczko M, Dalamagas T, Giannopoulos G . Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics. 2009; 10:295. PMC: 2752464. DOI: 10.1186/1471-2105-10-295. View

2.
Hunten S, Siemens H, Kaller M, Hermeking H . The p53/microRNA network in cancer: experimental and bioinformatics approaches. Adv Exp Med Biol. 2013; 774:77-101. DOI: 10.1007/978-94-007-5590-1_5. View

3.
Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M . A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 2011; 8(7):559-64. DOI: 10.1038/nmeth.1608. View

4.
Ritchie W, Flamant S, Rasko J . mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics. 2009; 26(2):223-7. DOI: 10.1093/bioinformatics/btp649. View

5.
Marin R, Voellmy F, von Erlach T, Vanicek J . Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3'-end of the seed match. RNA. 2012; 18(10):1760-70. PMC: 3446701. DOI: 10.1261/rna.033282.112. View