» Articles » PMID: 22303397

Accurate MicroRNA Target Prediction Using Detailed Binding Site Accessibility and Machine Learning on Proteomics Data

Overview
Journal Front Genet
Date 2012 Feb 4
PMID 22303397
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNAs (miRNAs) are a class of small regulatory genes regulating gene expression by targeting messenger RNA. Though computational methods for miRNA target prediction are the prevailing means to analyze their function, they still miss a large fraction of the targeted genes and additionally predict a large number of false positives. Here we introduce a novel algorithm called DIANA-microT-ANN which combines multiple novel target site features through an artificial neural network (ANN) and is trained using recently published high-throughput data measuring the change of protein levels after miRNA overexpression, providing positive and negative targeting examples. The features characterizing each miRNA recognition element include binding structure, conservation level, and a specific profile of structural accessibility. The ANN is trained to integrate the features of each recognition element along the 3'untranslated region into a targeting score, reproducing the relative repression fold change of the protein. Tested on two different sets the algorithm outperforms other widely used algorithms and also predicts a significant number of unique and reliable targets not predicted by the other methods. For 542 human miRNAs DIANA-microT-ANN predicts 120000 targets not provided by TargetScan 5.0. The algorithm is freely available at http://microrna.gr/microT-ANN.

Citing Articles

miR-193b-365 microcluster downstream of coordinates neuron-subtype identity and dendritic morphology in cortical projection neurons.

Iyer A, Vaasjo L, Siththanandan V, K C R, Thurmon A, Akumuo M iScience. 2025; 27(12):111500.

PMID: 39759000 PMC: 11697703. DOI: 10.1016/j.isci.2024.111500.


microT-CNN: an avant-garde deep convolutional neural network unravels functional miRNA targets beyond canonical sites.

Zacharopoulou E, Paraskevopoulou M, Tastsoglou S, Alexiou A, Karavangeli A, Pierros V Brief Bioinform. 2024; 26(1).

PMID: 39737571 PMC: 11685103. DOI: 10.1093/bib/bbae678.


Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling.

Gresova K, Alexiou P, Giassa I Biology (Basel). 2022; 11(12).

PMID: 36552307 PMC: 9775672. DOI: 10.3390/biology11121798.


miR-409-3p represses to refine neocortical layer V projection neuron identity.

Wagner N, Sinha A, Siththanandan V, Kowalchuk A, MacDonald J, Tharin S Front Neurosci. 2022; 16:931333.

PMID: 36248641 PMC: 9558290. DOI: 10.3389/fnins.2022.931333.


Targeting the miRNA-155/TNFSF10 network restrains inflammatory response in the retina in a mouse model of Alzheimer's disease.

Burgaletto C, Platania C, Di Benedetto G, Munafo A, Giurdanella G, Federico C Cell Death Dis. 2021; 12(10):905.

PMID: 34611142 PMC: 8492692. DOI: 10.1038/s41419-021-04165-x.


References
1.
Krutzfeldt J, Rajewsky N, Braich R, Rajeev K, Tuschl T, Manoharan M . Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005; 438(7068):685-9. DOI: 10.1038/nature04303. View

2.
Reczko M, Hatzigerrorgiou A . Prediction of the subcellular localization of eukaryotic proteins using sequence signals and composition. Proteomics. 2004; 4(6):1591-6. DOI: 10.1002/pmic.200300769. View

3.
Maragkakis M, Reczko M, Simossis V, Alexiou P, Papadopoulos G, Dalamagas T . DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res. 2009; 37(Web Server issue):W273-6. PMC: 2703977. DOI: 10.1093/nar/gkp292. View

4.
Sethupathy P, Corda B, Hatzigeorgiou A . TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 2005; 12(2):192-7. PMC: 1370898. DOI: 10.1261/rna.2239606. View

5.
Lau N, Lim L, WEINSTEIN E, Bartel D . An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001; 294(5543):858-62. DOI: 10.1126/science.1065062. View