» Articles » PMID: 22453836

Graphene-based Wireless Bacteria Detection on Tooth Enamel

Overview
Journal Nat Commun
Specialty Biology
Date 2012 Mar 29
PMID 22453836
Citations 173
Authors
Affiliations
Soon will be listed here.
Abstract

Direct interfacing of nanosensors onto biomaterials could impact health quality monitoring and adaptive threat detection. Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show that graphene can be printed onto water-soluble silk. This in turn permits intimate biotransfer of graphene nanosensors onto biomaterials, including tooth enamel. The result is a fully biointerfaced sensing platform, which can be tuned to detect target analytes. For example, via self-assembly of antimicrobial peptides onto graphene, we show bioselective detection of bacteria at single-cell levels. Incorporation of a resonant coil eliminates the need for onboard power and external connections. Combining these elements yields two-tiered interfacing of peptide-graphene nanosensors with biomaterials. In particular, we demonstrate integration onto a tooth for remote monitoring of respiration and bacteria detection in saliva. Overall, this strategy of interfacing graphene nanosensors with biomaterials represents a versatile approach for ubiquitous detection of biochemical targets.

Citing Articles

Myeloperoxidase as a biomarker in periodontal disease: electrochemical detection using printed screen graphene electrodes.

Valdivieso M, Ortiz L, Castillo J Odontology. 2025; .

PMID: 39954018 DOI: 10.1007/s10266-024-01043-8.


How Will Nanomedicine Revolutionize Future Dentistry and Periodontal Therapy?.

DAmico E, Aceto G, Petrini M, Cinquini C, DErcole S, Iezzi G Int J Mol Sci. 2025; 26(2).

PMID: 39859308 PMC: 11765319. DOI: 10.3390/ijms26020592.


Soft Wireless Passive Chipless Sensors for Biological Applications: A Review.

Zhang M, Li M, Xu W, Zhang F, Yao D, Wang X Biosensors (Basel). 2025; 15(1).

PMID: 39852057 PMC: 11764421. DOI: 10.3390/bios15010006.


Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems.

Sun Y, He W, Jiang C, Li J, Liu J, Liu M Nanomicro Lett. 2025; 17(1):109.

PMID: 39812886 PMC: 11735798. DOI: 10.1007/s40820-024-01597-w.


Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications.

Yue W, Guo Y, Lee J, Ganbold E, Wu J, Li Y Nanomicro Lett. 2025; 17(1):106.

PMID: 39779609 PMC: 11712043. DOI: 10.1007/s40820-024-01599-8.


References
1.
Liu Y, Yu D, Zeng C, Miao Z, Dai L . Biocompatible graphene oxide-based glucose biosensors. Langmuir. 2010; 26(9):6158-60. DOI: 10.1021/la100886x. View

2.
Agnew H, Rohde R, Millward S, Nag A, Yeo W, Hein J . Iterative in situ click chemistry creates antibody-like protein-capture agents. Angew Chem Int Ed Engl. 2009; 48(27):4944-8. PMC: 3716464. DOI: 10.1002/anie.200900488. View

3.
Yang W, Ratinac K, Ringer S, Thordarson P, Gooding J, Braet F . Carbon nanomaterials in biosensors: should you use nanotubes or graphene?. Angew Chem Int Ed Engl. 2010; 49(12):2114-38. DOI: 10.1002/anie.200903463. View

4.
Liao L, Lin Y, Bao M, Cheng R, Bai J, Liu Y . High-speed graphene transistors with a self-aligned nanowire gate. Nature. 2010; 467(7313):305-8. PMC: 2965636. DOI: 10.1038/nature09405. View

5.
Kim D, Lu N, Ma R, Kim Y, Kim R, Wang S . Epidermal electronics. Science. 2011; 333(6044):838-43. DOI: 10.1126/science.1206157. View