» Articles » PMID: 25293804

Cancer Evolution: Mathematical Models and Computational Inference

Overview
Journal Syst Biol
Specialty Biology
Date 2014 Oct 9
PMID 25293804
Citations 161
Authors
Affiliations
Soon will be listed here.
Abstract

Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.

Citing Articles

Cancer phylogenetic inference using copy number alterations detected from DNA sequencing data.

Lu B Cancer Pathog Ther. 2025; 3(1):16-29.

PMID: 39872371 PMC: 11764021. DOI: 10.1016/j.cpt.2024.04.003.


Clonal phylogenies inferred from bulk, single cell, and spatial transcriptomic analysis of epithelial cancers.

Erickson A, Figiel S, Rajakumar T, Rao S, Yin W, Doultsinos D PLoS One. 2025; 20(1):e0316475.

PMID: 39752458 PMC: 11698422. DOI: 10.1371/journal.pone.0316475.


Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones.

Hirsch M, Pal S, Rashidi Mehrabadi F, Malikic S, Gruen C, Sassano A Cell Syst. 2024; 16(1):101156.

PMID: 39701099 PMC: 11867576. DOI: 10.1016/j.cels.2024.11.013.


DICE: fast and accurate distance-based reconstruction of single-cell copy number phylogenies.

Weiner S, Bansal M Life Sci Alliance. 2024; 8(3).

PMID: 39667913 PMC: 11638338. DOI: 10.26508/lsa.202402923.


A hypercubic Mk model framework for capturing reversibility in disease, cancer, and evolutionary accumulation modelling.

Johnston I, Diaz-Uriarte R Bioinformatics. 2024; 41(1).

PMID: 39666947 PMC: 11681934. DOI: 10.1093/bioinformatics/btae737.


References
1.
Desper R, Jiang F, Kallioniemi O, Moch H, Papadimitriou C, Schaffer A . Inferring tree models for oncogenesis from comparative genome hybridization data. J Comput Biol. 1999; 6(1):37-51. DOI: 10.1089/cmb.1999.6.37. View

2.
Campbell P, Yachida S, Mudie L, Stephens P, Pleasance E, Stebbings L . The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010; 467(7319):1109-13. PMC: 3137369. DOI: 10.1038/nature09460. View

3.
Shen M . Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell. 2013; 23(5):567-9. PMC: 3673705. DOI: 10.1016/j.ccr.2013.04.025. View

4.
Lawrence M, Stojanov P, Polak P, Kryukov G, Cibulskis K, Sivachenko A . Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499(7457):214-218. PMC: 3919509. DOI: 10.1038/nature12213. View

5.
Brumer Y, Michor F, Shakhnovich E . Genetic instability and the quasispecies model. J Theor Biol. 2006; 241(2):216-22. DOI: 10.1016/j.jtbi.2005.11.018. View