» Articles » PMID: 25282610

A General Design Strategy for Protein-responsive Riboswitches in Mammalian Cells

Overview
Journal Nat Methods
Date 2014 Oct 6
PMID 25282610
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

RNAs are ideal for the design of gene switches that can monitor and program cellular behavior because of their high modularity and predictable structure-function relationship. We have assembled an expression platform with an embedded modular ribozyme scaffold that correlates self-cleavage activity of designer ribozymes with transgene translation in bacteria and mammalian cells. A design approach devised to screen ribozyme libraries in bacteria and validate variants with functional tertiary stem-loop structures in mammalian cells resulted in a designer ribozyme with a protein-binding nutR-boxB stem II and a selected matching stem I. In a mammalian expression context, this designer ribozyme exhibited dose-dependent translation control by the N-peptide, had rapid induction kinetics and could be combined with classic small molecule-responsive transcription control modalities to construct complex, programmable genetic circuits.

Citing Articles

Deep generative design of RNA family sequences.

Sumi S, Hamada M, Saito H Nat Methods. 2024; 21(3):435-443.

PMID: 38238559 DOI: 10.1038/s41592-023-02148-8.


An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

Pietruschka G, Ranzani A, Weber A, Patwari T, Pilsl S, Renzl C Adv Sci (Weinh). 2024; 11(12):e2304519.

PMID: 38227373 PMC: 10966536. DOI: 10.1002/advs.202304519.


Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells.

Shao J, Li S, Qiu X, Jiang J, Zhang L, Wang P Cell Res. 2024; 34(1):31-46.

PMID: 38172533 PMC: 10770082. DOI: 10.1038/s41422-023-00896-y.


Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics.

Teixeira A, Fussenegger M Adv Sci (Weinh). 2023; 11(8):e2309088.

PMID: 38126677 PMC: 10885662. DOI: 10.1002/advs.202309088.


Customizing cellular signal processing by synthetic multi-level regulatory circuits.

Gao Y, Wang L, Wang B Nat Commun. 2023; 14(1):8415.

PMID: 38110405 PMC: 10728147. DOI: 10.1038/s41467-023-44256-1.


References
1.
Ketzer P, Kaufmann J, Engelhardt S, Bossow S, von Kalle C, Hartig J . Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A. 2014; 111(5):E554-62. PMC: 3918795. DOI: 10.1073/pnas.1318563111. View

2.
Lazinski D, Grzadzielska E, Das A . Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989; 59(1):207-18. DOI: 10.1016/0092-8674(89)90882-9. View

3.
Berschneider B, Wieland M, Rubini M, Hartig J . Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem Int Ed Engl. 2009; 48(41):7564-7. DOI: 10.1002/anie.200900851. View

4.
Benenson Y . Biomolecular computing systems: principles, progress and potential. Nat Rev Genet. 2012; 13(7):455-68. DOI: 10.1038/nrg3197. View

5.
Chen Y, Jensen M, Smolke C . Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A. 2010; 107(19):8531-6. PMC: 2889348. DOI: 10.1073/pnas.1001721107. View